Metamath Proof Explorer


Theorem ax8

Description: Proof of ax-8 from ax8v1 and ax8v2 , proving sufficiency of the conjunction of the latter two weakened versions of ax8v , which is itself a weakened version of ax-8 . (Contributed by BJ, 7-Dec-2020) (Proof shortened by Wolf Lammen, 11-Apr-2021)

Ref Expression
Assertion ax8
|- ( x = y -> ( x e. z -> y e. z ) )

Proof

Step Hyp Ref Expression
1 equvinv
 |-  ( x = y <-> E. t ( t = x /\ t = y ) )
2 ax8v2
 |-  ( x = t -> ( x e. z -> t e. z ) )
3 2 equcoms
 |-  ( t = x -> ( x e. z -> t e. z ) )
4 ax8v1
 |-  ( t = y -> ( t e. z -> y e. z ) )
5 3 4 sylan9
 |-  ( ( t = x /\ t = y ) -> ( x e. z -> y e. z ) )
6 5 exlimiv
 |-  ( E. t ( t = x /\ t = y ) -> ( x e. z -> y e. z ) )
7 1 6 sylbi
 |-  ( x = y -> ( x e. z -> y e. z ) )