Metamath Proof Explorer


Theorem axaci

Description: Apply a choice equivalent. (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Hypothesis axaci.1
|- ( CHOICE <-> A. x ph )
Assertion axaci
|- ph

Proof

Step Hyp Ref Expression
1 axaci.1
 |-  ( CHOICE <-> A. x ph )
2 axac3
 |-  CHOICE
3 2 1 mpbi
 |-  A. x ph
4 3 spi
 |-  ph