Description: Axiom ax-c14 is redundant if we assume ax-5 . Remark 9.6 in Megill p. 448 (p. 16 of the preprint), regarding axiom scheme C14'.
Note that w is a dummy variable introduced in the proof. Its purpose is to satisfy the distinct variable requirements of dveel2 and ax-5 . By the end of the proof it has vanished, and the final theorem has no distinct variable requirements. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 29-Jun-1995) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | axc14 | |- ( -. A. z z = x -> ( -. A. z z = y -> ( x e. y -> A. z x e. y ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbn1 | |- ( -. A. z z = y -> A. z -. A. z z = y ) |
|
2 | dveel2 | |- ( -. A. z z = y -> ( w e. y -> A. z w e. y ) ) |
|
3 | 1 2 | hbim1 | |- ( ( -. A. z z = y -> w e. y ) -> A. z ( -. A. z z = y -> w e. y ) ) |
4 | elequ1 | |- ( w = x -> ( w e. y <-> x e. y ) ) |
|
5 | 4 | imbi2d | |- ( w = x -> ( ( -. A. z z = y -> w e. y ) <-> ( -. A. z z = y -> x e. y ) ) ) |
6 | 3 5 | dvelim | |- ( -. A. z z = x -> ( ( -. A. z z = y -> x e. y ) -> A. z ( -. A. z z = y -> x e. y ) ) ) |
7 | nfa1 | |- F/ z A. z z = y |
|
8 | 7 | nfn | |- F/ z -. A. z z = y |
9 | 8 | 19.21 | |- ( A. z ( -. A. z z = y -> x e. y ) <-> ( -. A. z z = y -> A. z x e. y ) ) |
10 | 6 9 | syl6ib | |- ( -. A. z z = x -> ( ( -. A. z z = y -> x e. y ) -> ( -. A. z z = y -> A. z x e. y ) ) ) |
11 | 10 | pm2.86d | |- ( -. A. z z = x -> ( -. A. z z = y -> ( x e. y -> A. z x e. y ) ) ) |