Metamath Proof Explorer


Theorem axc16

Description: Proof of older axiom ax-c16 . (Contributed by NM, 8-Nov-2006) (Revised by NM, 22-Sep-2017)

Ref Expression
Assertion axc16
|- ( A. x x = y -> ( ph -> A. x ph ) )

Proof

Step Hyp Ref Expression
1 axc16g
 |-  ( A. x x = y -> ( ph -> A. x ph ) )