Description: Alternate proof of axc16 , shorter but requiring ax-10 , ax-11 , ax-13 and using df-nf and df-sb . (Contributed by NM, 17-May-2008) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | axc16ALT | |- ( A. x x = y -> ( ph -> A. x ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 | |- ( x = z -> ( ph <-> [ z / x ] ph ) ) |
|
2 | ax-5 | |- ( ph -> A. z ph ) |
|
3 | 2 | hbsb3 | |- ( [ z / x ] ph -> A. x [ z / x ] ph ) |
4 | 1 3 | axc16i | |- ( A. x x = y -> ( ph -> A. x ph ) ) |