Metamath Proof Explorer


Theorem axc16ALT

Description: Alternate proof of axc16 , shorter but requiring ax-10 , ax-11 , ax-13 and using df-nf and df-sb . (Contributed by NM, 17-May-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc16ALT
|- ( A. x x = y -> ( ph -> A. x ph ) )

Proof

Step Hyp Ref Expression
1 sbequ12
 |-  ( x = z -> ( ph <-> [ z / x ] ph ) )
2 ax-5
 |-  ( ph -> A. z ph )
3 2 hbsb3
 |-  ( [ z / x ] ph -> A. x [ z / x ] ph )
4 1 3 axc16i
 |-  ( A. x x = y -> ( ph -> A. x ph ) )