Metamath Proof Explorer


Theorem axc16g-o

Description: A generalization of Axiom ax-c16 . Version of axc16g using ax-c11 . (Contributed by NM, 15-May-1993) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc16g-o
|- ( A. x x = y -> ( ph -> A. z ph ) )

Proof

Step Hyp Ref Expression
1 aev-o
 |-  ( A. x x = y -> A. z z = x )
2 ax-c16
 |-  ( A. x x = y -> ( ph -> A. x ph ) )
3 biidd
 |-  ( A. z z = x -> ( ph <-> ph ) )
4 3 dral1-o
 |-  ( A. z z = x -> ( A. z ph <-> A. x ph ) )
5 4 biimprd
 |-  ( A. z z = x -> ( A. x ph -> A. z ph ) )
6 1 2 5 sylsyld
 |-  ( A. x x = y -> ( ph -> A. z ph ) )