Metamath Proof Explorer


Theorem axc16gALT

Description: Alternate proof of axc16g that uses df-sb and requires ax-10 , ax-11 , ax-13 . (Contributed by NM, 15-May-1993) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc16gALT
|- ( A. x x = y -> ( ph -> A. z ph ) )

Proof

Step Hyp Ref Expression
1 aev
 |-  ( A. x x = y -> A. z z = x )
2 axc16ALT
 |-  ( A. x x = y -> ( ph -> A. x ph ) )
3 biidd
 |-  ( A. z z = x -> ( ph <-> ph ) )
4 3 dral1
 |-  ( A. z z = x -> ( A. z ph <-> A. x ph ) )
5 4 biimprd
 |-  ( A. z z = x -> ( A. x ph -> A. z ph ) )
6 1 2 5 sylsyld
 |-  ( A. x x = y -> ( ph -> A. z ph ) )