Description: Alternate proof of axc16nf , shorter but requiring ax-11 and ax-13 . (Contributed by Mario Carneiro, 7-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axc16nfALT | |- ( A. x x = y -> F/ z ph ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfae | |- F/ z A. x x = y | |
| 2 | axc16g | |- ( A. x x = y -> ( ph -> A. z ph ) ) | |
| 3 | 1 2 | nf5d | |- ( A. x x = y -> F/ z ph ) |