Description: Alternate proof of axc16nf , shorter but requiring ax-11 and ax-13 . (Contributed by Mario Carneiro, 7-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | axc16nfALT | |- ( A. x x = y -> F/ z ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfae | |- F/ z A. x x = y |
|
2 | axc16g | |- ( A. x x = y -> ( ph -> A. z ph ) ) |
|
3 | 1 2 | nf5d | |- ( A. x x = y -> F/ z ph ) |