Metamath Proof Explorer


Theorem axc4

Description: Show that the original axiom ax-c4 can be derived from ax-4 ( alim ), ax-10 ( hbn1 ), sp and propositional calculus. See ax4fromc4 for the rederivation of ax-4 from ax-c4 .

Part of the proof is based on the proof of Lemma 22 of Monk2 p. 114. (Contributed by NM, 21-May-2008) (Proof modification is discouraged.)

Ref Expression
Assertion axc4
|- ( A. x ( A. x ph -> ps ) -> ( A. x ph -> A. x ps ) )

Proof

Step Hyp Ref Expression
1 sp
 |-  ( A. x -. A. x ph -> -. A. x ph )
2 1 con2i
 |-  ( A. x ph -> -. A. x -. A. x ph )
3 hbn1
 |-  ( -. A. x -. A. x ph -> A. x -. A. x -. A. x ph )
4 hbn1
 |-  ( -. A. x ph -> A. x -. A. x ph )
5 4 con1i
 |-  ( -. A. x -. A. x ph -> A. x ph )
6 5 alimi
 |-  ( A. x -. A. x -. A. x ph -> A. x A. x ph )
7 2 3 6 3syl
 |-  ( A. x ph -> A. x A. x ph )
8 alim
 |-  ( A. x ( A. x ph -> ps ) -> ( A. x A. x ph -> A. x ps ) )
9 7 8 syl5
 |-  ( A. x ( A. x ph -> ps ) -> ( A. x ph -> A. x ps ) )