Metamath Proof Explorer


Theorem axc4i

Description: Inference version of axc4 . (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypothesis axc4i.1
|- ( A. x ph -> ps )
Assertion axc4i
|- ( A. x ph -> A. x ps )

Proof

Step Hyp Ref Expression
1 axc4i.1
 |-  ( A. x ph -> ps )
2 nfa1
 |-  F/ x A. x ph
3 2 1 alrimi
 |-  ( A. x ph -> A. x ps )