Metamath Proof Explorer


Theorem axc4i-o

Description: Inference version of ax-c4 . (Contributed by NM, 3-Jan-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis axc4i-o.1
|- ( A. x ph -> ps )
Assertion axc4i-o
|- ( A. x ph -> A. x ps )

Proof

Step Hyp Ref Expression
1 axc4i-o.1
 |-  ( A. x ph -> ps )
2 hba1-o
 |-  ( A. x ph -> A. x A. x ph )
3 2 1 alrimih
 |-  ( A. x ph -> A. x ps )