Metamath Proof Explorer


Theorem axc5c7

Description: Proof of a single axiom that can replace ax-c5 and ax-c7 . See axc5c7toc5 and axc5c7toc7 for the rederivation of those axioms. (Contributed by Scott Fenton, 12-Sep-2005) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c7
|- ( ( A. x -. A. x ph -> A. x ph ) -> ph )

Proof

Step Hyp Ref Expression
1 ax-c7
 |-  ( -. A. x -. A. x ph -> ph )
2 ax-c5
 |-  ( A. x ph -> ph )
3 1 2 ja
 |-  ( ( A. x -. A. x ph -> A. x ph ) -> ph )