Metamath Proof Explorer


Theorem axc5c711toc7

Description: Rederivation of ax-c7 from axc5c711 . Note that ax-c7 and ax-11 are not used by the rederivation. The use of alimi (which uses ax-c5 ) is allowed since we have already proved axc5c711toc5 . (Contributed by NM, 19-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc5c711toc7
|- ( -. A. x -. A. x ph -> ph )

Proof

Step Hyp Ref Expression
1 hba1-o
 |-  ( A. x ph -> A. x A. x ph )
2 1 con3i
 |-  ( -. A. x A. x ph -> -. A. x ph )
3 2 alimi
 |-  ( A. x -. A. x A. x ph -> A. x -. A. x ph )
4 3 sps-o
 |-  ( A. x A. x -. A. x A. x ph -> A. x -. A. x ph )
5 4 con3i
 |-  ( -. A. x -. A. x ph -> -. A. x A. x -. A. x A. x ph )
6 pm2.21
 |-  ( -. A. x A. x -. A. x A. x ph -> ( A. x A. x -. A. x A. x ph -> A. x ph ) )
7 axc5c711
 |-  ( ( A. x A. x -. A. x A. x ph -> A. x ph ) -> ph )
8 5 6 7 3syl
 |-  ( -. A. x -. A. x ph -> ph )