Metamath Proof Explorer


Theorem axc711toc7

Description: Rederivation of ax-c7 from axc711 . Note that ax-c7 and ax-11 are not used by the rederivation. (Contributed by NM, 18-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc711toc7
|- ( -. A. x -. A. x ph -> ph )

Proof

Step Hyp Ref Expression
1 hba1-o
 |-  ( A. x ph -> A. x A. x ph )
2 1 con3i
 |-  ( -. A. x A. x ph -> -. A. x ph )
3 2 alimi
 |-  ( A. x -. A. x A. x ph -> A. x -. A. x ph )
4 3 con3i
 |-  ( -. A. x -. A. x ph -> -. A. x -. A. x A. x ph )
5 axc711
 |-  ( -. A. x -. A. x A. x ph -> A. x ph )
6 ax-c5
 |-  ( A. x ph -> ph )
7 4 5 6 3syl
 |-  ( -. A. x -. A. x ph -> ph )