Metamath Proof Explorer


Theorem axc7e

Description: Abbreviated version of axc7 using the existential quantifier. Corresponds to the dual of Axiom (B) of modal logic. (Contributed by NM, 5-Aug-1993) (Proof shortened by Wolf Lammen, 8-Jul-2022)

Ref Expression
Assertion axc7e
|- ( E. x A. x ph -> ph )

Proof

Step Hyp Ref Expression
1 hbe1a
 |-  ( E. x A. x ph -> A. x ph )
2 1 19.21bi
 |-  ( E. x A. x ph -> ph )