| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfcv |  |-  F/_ n if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) | 
						
							| 2 |  | nfcv |  |-  F/_ m if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) | 
						
							| 3 |  | fveqeq2 |  |-  ( m = n -> ( ( F ` m ) = (/) <-> ( F ` n ) = (/) ) ) | 
						
							| 4 |  | fveq2 |  |-  ( m = n -> ( F ` m ) = ( F ` n ) ) | 
						
							| 5 | 3 4 | ifbieq2d |  |-  ( m = n -> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) = if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) ) | 
						
							| 6 | 1 2 5 | cbvmpt |  |-  ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) = ( n e. _om |-> if ( ( F ` n ) = (/) , { (/) } , ( F ` n ) ) ) | 
						
							| 7 |  | nfcv |  |-  F/_ n ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) | 
						
							| 8 |  | nfcv |  |-  F/_ m { n } | 
						
							| 9 |  | nffvmpt1 |  |-  F/_ m ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` n ) | 
						
							| 10 | 8 9 | nfxp |  |-  F/_ m ( { n } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` n ) ) | 
						
							| 11 |  | sneq |  |-  ( m = n -> { m } = { n } ) | 
						
							| 12 |  | fveq2 |  |-  ( m = n -> ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) = ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` n ) ) | 
						
							| 13 | 11 12 | xpeq12d |  |-  ( m = n -> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) = ( { n } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` n ) ) ) | 
						
							| 14 | 7 10 13 | cbvmpt |  |-  ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) = ( n e. _om |-> ( { n } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` n ) ) ) | 
						
							| 15 |  | nfcv |  |-  F/_ n ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` m ) ) ) | 
						
							| 16 |  | nfcv |  |-  F/_ m 2nd | 
						
							| 17 |  | nfcv |  |-  F/_ m f | 
						
							| 18 |  | nffvmpt1 |  |-  F/_ m ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) | 
						
							| 19 | 17 18 | nffv |  |-  F/_ m ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) ) | 
						
							| 20 | 16 19 | nffv |  |-  F/_ m ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) ) ) | 
						
							| 21 |  | 2fveq3 |  |-  ( m = n -> ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` m ) ) = ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( m = n -> ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` m ) ) ) = ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) ) ) ) | 
						
							| 23 | 15 20 22 | cbvmpt |  |-  ( m e. _om |-> ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` m ) ) ) ) = ( n e. _om |-> ( 2nd ` ( f ` ( ( m e. _om |-> ( { m } X. ( ( m e. _om |-> if ( ( F ` m ) = (/) , { (/) } , ( F ` m ) ) ) ` m ) ) ) ` n ) ) ) ) | 
						
							| 24 | 6 14 23 | axcc2lem |  |-  E. g ( g Fn _om /\ A. n e. _om ( ( F ` n ) =/= (/) -> ( g ` n ) e. ( F ` n ) ) ) |