Step |
Hyp |
Ref |
Expression |
1 |
|
axccd.1 |
|- ( ph -> A ~~ _om ) |
2 |
|
axccd.2 |
|- ( ( ph /\ x e. A ) -> x =/= (/) ) |
3 |
|
encv |
|- ( A ~~ _om -> ( A e. _V /\ _om e. _V ) ) |
4 |
3
|
simpld |
|- ( A ~~ _om -> A e. _V ) |
5 |
|
breq1 |
|- ( y = A -> ( y ~~ _om <-> A ~~ _om ) ) |
6 |
|
raleq |
|- ( y = A -> ( A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) <-> A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) ) |
7 |
6
|
exbidv |
|- ( y = A -> ( E. f A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) <-> E. f A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) ) |
8 |
5 7
|
imbi12d |
|- ( y = A -> ( ( y ~~ _om -> E. f A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) ) <-> ( A ~~ _om -> E. f A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) ) ) |
9 |
|
ax-cc |
|- ( y ~~ _om -> E. f A. x e. y ( x =/= (/) -> ( f ` x ) e. x ) ) |
10 |
8 9
|
vtoclg |
|- ( A e. _V -> ( A ~~ _om -> E. f A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) ) |
11 |
1 4 10
|
3syl |
|- ( ph -> ( A ~~ _om -> E. f A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) ) |
12 |
1 11
|
mpd |
|- ( ph -> E. f A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) |
13 |
|
nfv |
|- F/ x ph |
14 |
|
nfra1 |
|- F/ x A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) |
15 |
13 14
|
nfan |
|- F/ x ( ph /\ A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) |
16 |
2
|
adantlr |
|- ( ( ( ph /\ A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) /\ x e. A ) -> x =/= (/) ) |
17 |
|
rspa |
|- ( ( A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) /\ x e. A ) -> ( x =/= (/) -> ( f ` x ) e. x ) ) |
18 |
17
|
adantll |
|- ( ( ( ph /\ A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) /\ x e. A ) -> ( x =/= (/) -> ( f ` x ) e. x ) ) |
19 |
16 18
|
mpd |
|- ( ( ( ph /\ A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) /\ x e. A ) -> ( f ` x ) e. x ) |
20 |
15 19
|
ralrimia |
|- ( ( ph /\ A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) ) -> A. x e. A ( f ` x ) e. x ) |
21 |
20
|
ex |
|- ( ph -> ( A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) -> A. x e. A ( f ` x ) e. x ) ) |
22 |
21
|
eximdv |
|- ( ph -> ( E. f A. x e. A ( x =/= (/) -> ( f ` x ) e. x ) -> E. f A. x e. A ( f ` x ) e. x ) ) |
23 |
12 22
|
mpd |
|- ( ph -> E. f A. x e. A ( f ` x ) e. x ) |