Step |
Hyp |
Ref |
Expression |
1 |
|
axccd2.1 |
|- ( ph -> A ~<_ _om ) |
2 |
|
axccd2.2 |
|- ( ( ph /\ x e. A ) -> x =/= (/) ) |
3 |
|
isfinite2 |
|- ( A ~< _om -> A e. Fin ) |
4 |
3
|
adantl |
|- ( ( ph /\ A ~< _om ) -> A e. Fin ) |
5 |
|
simpr |
|- ( ( ( ph /\ A ~< _om ) /\ x e. A ) -> x e. A ) |
6 |
2
|
adantlr |
|- ( ( ( ph /\ A ~< _om ) /\ x e. A ) -> x =/= (/) ) |
7 |
4 5 6
|
choicefi |
|- ( ( ph /\ A ~< _om ) -> E. f ( f Fn A /\ A. x e. A ( f ` x ) e. x ) ) |
8 |
|
simpr |
|- ( ( f Fn A /\ A. x e. A ( f ` x ) e. x ) -> A. x e. A ( f ` x ) e. x ) |
9 |
8
|
a1i |
|- ( ( ph /\ A ~< _om ) -> ( ( f Fn A /\ A. x e. A ( f ` x ) e. x ) -> A. x e. A ( f ` x ) e. x ) ) |
10 |
9
|
eximdv |
|- ( ( ph /\ A ~< _om ) -> ( E. f ( f Fn A /\ A. x e. A ( f ` x ) e. x ) -> E. f A. x e. A ( f ` x ) e. x ) ) |
11 |
7 10
|
mpd |
|- ( ( ph /\ A ~< _om ) -> E. f A. x e. A ( f ` x ) e. x ) |
12 |
1
|
anim1i |
|- ( ( ph /\ -. A ~< _om ) -> ( A ~<_ _om /\ -. A ~< _om ) ) |
13 |
|
bren2 |
|- ( A ~~ _om <-> ( A ~<_ _om /\ -. A ~< _om ) ) |
14 |
12 13
|
sylibr |
|- ( ( ph /\ -. A ~< _om ) -> A ~~ _om ) |
15 |
|
simpr |
|- ( ( ph /\ A ~~ _om ) -> A ~~ _om ) |
16 |
2
|
adantlr |
|- ( ( ( ph /\ A ~~ _om ) /\ x e. A ) -> x =/= (/) ) |
17 |
15 16
|
axccd |
|- ( ( ph /\ A ~~ _om ) -> E. f A. x e. A ( f ` x ) e. x ) |
18 |
14 17
|
syldan |
|- ( ( ph /\ -. A ~< _om ) -> E. f A. x e. A ( f ` x ) e. x ) |
19 |
11 18
|
pm2.61dan |
|- ( ph -> E. f A. x e. A ( f ` x ) e. x ) |