| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveecn |
|- ( ( C e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( C ` i ) e. CC ) |
| 2 |
|
subid |
|- ( ( C ` i ) e. CC -> ( ( C ` i ) - ( C ` i ) ) = 0 ) |
| 3 |
2
|
sq0id |
|- ( ( C ` i ) e. CC -> ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) = 0 ) |
| 4 |
1 3
|
syl |
|- ( ( C e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) = 0 ) |
| 5 |
4
|
sumeq2dv |
|- ( C e. ( EE ` N ) -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) 0 ) |
| 6 |
|
fzfid |
|- ( C e. ( EE ` N ) -> ( 1 ... N ) e. Fin ) |
| 7 |
|
sumz |
|- ( ( ( 1 ... N ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... N ) e. Fin ) -> sum_ i e. ( 1 ... N ) 0 = 0 ) |
| 8 |
7
|
olcs |
|- ( ( 1 ... N ) e. Fin -> sum_ i e. ( 1 ... N ) 0 = 0 ) |
| 9 |
6 8
|
syl |
|- ( C e. ( EE ` N ) -> sum_ i e. ( 1 ... N ) 0 = 0 ) |
| 10 |
5 9
|
eqtrd |
|- ( C e. ( EE ` N ) -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) = 0 ) |
| 11 |
10
|
3ad2ant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) = 0 ) |
| 12 |
11
|
eqeq2d |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 ) ) |
| 13 |
|
fzfid |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( 1 ... N ) e. Fin ) |
| 14 |
|
fveere |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) |
| 15 |
14
|
adantlr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) |
| 16 |
|
fveere |
|- ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) |
| 17 |
16
|
adantll |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) |
| 18 |
15 17
|
resubcld |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) - ( B ` i ) ) e. RR ) |
| 19 |
18
|
resqcld |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. RR ) |
| 20 |
18
|
sqge0d |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> 0 <_ ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) |
| 21 |
13 19 20
|
fsum00 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> A. i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 ) ) |
| 22 |
|
fveecn |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
| 23 |
|
fveecn |
|- ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) |
| 24 |
|
subcl |
|- ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) -> ( ( A ` i ) - ( B ` i ) ) e. CC ) |
| 25 |
|
sqeq0 |
|- ( ( ( A ` i ) - ( B ` i ) ) e. CC -> ( ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> ( ( A ` i ) - ( B ` i ) ) = 0 ) ) |
| 26 |
24 25
|
syl |
|- ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) -> ( ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> ( ( A ` i ) - ( B ` i ) ) = 0 ) ) |
| 27 |
|
subeq0 |
|- ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) -> ( ( ( A ` i ) - ( B ` i ) ) = 0 <-> ( A ` i ) = ( B ` i ) ) ) |
| 28 |
26 27
|
bitrd |
|- ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) -> ( ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> ( A ` i ) = ( B ` i ) ) ) |
| 29 |
22 23 28
|
syl2an |
|- ( ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) /\ ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) ) -> ( ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> ( A ` i ) = ( B ` i ) ) ) |
| 30 |
29
|
anandirs |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> ( A ` i ) = ( B ` i ) ) ) |
| 31 |
30
|
ralbidva |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A. i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
| 32 |
21 31
|
bitrd |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
| 33 |
32
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
| 34 |
12 33
|
bitrd |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
| 35 |
|
simp1 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
| 36 |
|
simp2 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
| 37 |
|
simp3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> C e. ( EE ` N ) ) |
| 38 |
|
brcgr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. C , C >. <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) ) ) |
| 39 |
35 36 37 37 38
|
syl22anc |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( <. A , B >. Cgr <. C , C >. <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) ) ) |
| 40 |
|
eqeefv |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
| 41 |
40
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
| 42 |
34 39 41
|
3bitr4d |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( <. A , B >. Cgr <. C , C >. <-> A = B ) ) |
| 43 |
42
|
biimpd |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( <. A , B >. Cgr <. C , C >. -> A = B ) ) |
| 44 |
43
|
adantl |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. C , C >. -> A = B ) ) |