Step |
Hyp |
Ref |
Expression |
1 |
|
df-c |
|- CC = ( R. X. R. ) |
2 |
|
eqeq1 |
|- ( <. z , w >. = A -> ( <. z , w >. = ( x + ( _i x. y ) ) <-> A = ( x + ( _i x. y ) ) ) ) |
3 |
2
|
2rexbidv |
|- ( <. z , w >. = A -> ( E. x e. RR E. y e. RR <. z , w >. = ( x + ( _i x. y ) ) <-> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) ) |
4 |
|
opelreal |
|- ( <. z , 0R >. e. RR <-> z e. R. ) |
5 |
|
opelreal |
|- ( <. w , 0R >. e. RR <-> w e. R. ) |
6 |
4 5
|
anbi12i |
|- ( ( <. z , 0R >. e. RR /\ <. w , 0R >. e. RR ) <-> ( z e. R. /\ w e. R. ) ) |
7 |
6
|
biimpri |
|- ( ( z e. R. /\ w e. R. ) -> ( <. z , 0R >. e. RR /\ <. w , 0R >. e. RR ) ) |
8 |
|
df-i |
|- _i = <. 0R , 1R >. |
9 |
8
|
oveq1i |
|- ( _i x. <. w , 0R >. ) = ( <. 0R , 1R >. x. <. w , 0R >. ) |
10 |
|
0r |
|- 0R e. R. |
11 |
|
1sr |
|- 1R e. R. |
12 |
|
mulcnsr |
|- ( ( ( 0R e. R. /\ 1R e. R. ) /\ ( w e. R. /\ 0R e. R. ) ) -> ( <. 0R , 1R >. x. <. w , 0R >. ) = <. ( ( 0R .R w ) +R ( -1R .R ( 1R .R 0R ) ) ) , ( ( 1R .R w ) +R ( 0R .R 0R ) ) >. ) |
13 |
10 11 12
|
mpanl12 |
|- ( ( w e. R. /\ 0R e. R. ) -> ( <. 0R , 1R >. x. <. w , 0R >. ) = <. ( ( 0R .R w ) +R ( -1R .R ( 1R .R 0R ) ) ) , ( ( 1R .R w ) +R ( 0R .R 0R ) ) >. ) |
14 |
10 13
|
mpan2 |
|- ( w e. R. -> ( <. 0R , 1R >. x. <. w , 0R >. ) = <. ( ( 0R .R w ) +R ( -1R .R ( 1R .R 0R ) ) ) , ( ( 1R .R w ) +R ( 0R .R 0R ) ) >. ) |
15 |
|
mulcomsr |
|- ( 0R .R w ) = ( w .R 0R ) |
16 |
|
00sr |
|- ( w e. R. -> ( w .R 0R ) = 0R ) |
17 |
15 16
|
eqtrid |
|- ( w e. R. -> ( 0R .R w ) = 0R ) |
18 |
17
|
oveq1d |
|- ( w e. R. -> ( ( 0R .R w ) +R ( -1R .R ( 1R .R 0R ) ) ) = ( 0R +R ( -1R .R ( 1R .R 0R ) ) ) ) |
19 |
|
00sr |
|- ( 1R e. R. -> ( 1R .R 0R ) = 0R ) |
20 |
11 19
|
ax-mp |
|- ( 1R .R 0R ) = 0R |
21 |
20
|
oveq2i |
|- ( -1R .R ( 1R .R 0R ) ) = ( -1R .R 0R ) |
22 |
|
m1r |
|- -1R e. R. |
23 |
|
00sr |
|- ( -1R e. R. -> ( -1R .R 0R ) = 0R ) |
24 |
22 23
|
ax-mp |
|- ( -1R .R 0R ) = 0R |
25 |
21 24
|
eqtri |
|- ( -1R .R ( 1R .R 0R ) ) = 0R |
26 |
25
|
oveq2i |
|- ( 0R +R ( -1R .R ( 1R .R 0R ) ) ) = ( 0R +R 0R ) |
27 |
|
0idsr |
|- ( 0R e. R. -> ( 0R +R 0R ) = 0R ) |
28 |
10 27
|
ax-mp |
|- ( 0R +R 0R ) = 0R |
29 |
26 28
|
eqtri |
|- ( 0R +R ( -1R .R ( 1R .R 0R ) ) ) = 0R |
30 |
18 29
|
eqtrdi |
|- ( w e. R. -> ( ( 0R .R w ) +R ( -1R .R ( 1R .R 0R ) ) ) = 0R ) |
31 |
|
mulcomsr |
|- ( 1R .R w ) = ( w .R 1R ) |
32 |
|
1idsr |
|- ( w e. R. -> ( w .R 1R ) = w ) |
33 |
31 32
|
eqtrid |
|- ( w e. R. -> ( 1R .R w ) = w ) |
34 |
33
|
oveq1d |
|- ( w e. R. -> ( ( 1R .R w ) +R ( 0R .R 0R ) ) = ( w +R ( 0R .R 0R ) ) ) |
35 |
|
00sr |
|- ( 0R e. R. -> ( 0R .R 0R ) = 0R ) |
36 |
10 35
|
ax-mp |
|- ( 0R .R 0R ) = 0R |
37 |
36
|
oveq2i |
|- ( w +R ( 0R .R 0R ) ) = ( w +R 0R ) |
38 |
|
0idsr |
|- ( w e. R. -> ( w +R 0R ) = w ) |
39 |
37 38
|
eqtrid |
|- ( w e. R. -> ( w +R ( 0R .R 0R ) ) = w ) |
40 |
34 39
|
eqtrd |
|- ( w e. R. -> ( ( 1R .R w ) +R ( 0R .R 0R ) ) = w ) |
41 |
30 40
|
opeq12d |
|- ( w e. R. -> <. ( ( 0R .R w ) +R ( -1R .R ( 1R .R 0R ) ) ) , ( ( 1R .R w ) +R ( 0R .R 0R ) ) >. = <. 0R , w >. ) |
42 |
14 41
|
eqtrd |
|- ( w e. R. -> ( <. 0R , 1R >. x. <. w , 0R >. ) = <. 0R , w >. ) |
43 |
9 42
|
eqtrid |
|- ( w e. R. -> ( _i x. <. w , 0R >. ) = <. 0R , w >. ) |
44 |
43
|
oveq2d |
|- ( w e. R. -> ( <. z , 0R >. + ( _i x. <. w , 0R >. ) ) = ( <. z , 0R >. + <. 0R , w >. ) ) |
45 |
44
|
adantl |
|- ( ( z e. R. /\ w e. R. ) -> ( <. z , 0R >. + ( _i x. <. w , 0R >. ) ) = ( <. z , 0R >. + <. 0R , w >. ) ) |
46 |
|
addcnsr |
|- ( ( ( z e. R. /\ 0R e. R. ) /\ ( 0R e. R. /\ w e. R. ) ) -> ( <. z , 0R >. + <. 0R , w >. ) = <. ( z +R 0R ) , ( 0R +R w ) >. ) |
47 |
10 46
|
mpanl2 |
|- ( ( z e. R. /\ ( 0R e. R. /\ w e. R. ) ) -> ( <. z , 0R >. + <. 0R , w >. ) = <. ( z +R 0R ) , ( 0R +R w ) >. ) |
48 |
10 47
|
mpanr1 |
|- ( ( z e. R. /\ w e. R. ) -> ( <. z , 0R >. + <. 0R , w >. ) = <. ( z +R 0R ) , ( 0R +R w ) >. ) |
49 |
|
0idsr |
|- ( z e. R. -> ( z +R 0R ) = z ) |
50 |
|
addcomsr |
|- ( 0R +R w ) = ( w +R 0R ) |
51 |
50 38
|
eqtrid |
|- ( w e. R. -> ( 0R +R w ) = w ) |
52 |
|
opeq12 |
|- ( ( ( z +R 0R ) = z /\ ( 0R +R w ) = w ) -> <. ( z +R 0R ) , ( 0R +R w ) >. = <. z , w >. ) |
53 |
49 51 52
|
syl2an |
|- ( ( z e. R. /\ w e. R. ) -> <. ( z +R 0R ) , ( 0R +R w ) >. = <. z , w >. ) |
54 |
45 48 53
|
3eqtrrd |
|- ( ( z e. R. /\ w e. R. ) -> <. z , w >. = ( <. z , 0R >. + ( _i x. <. w , 0R >. ) ) ) |
55 |
|
opex |
|- <. z , 0R >. e. _V |
56 |
|
opex |
|- <. w , 0R >. e. _V |
57 |
|
eleq1 |
|- ( x = <. z , 0R >. -> ( x e. RR <-> <. z , 0R >. e. RR ) ) |
58 |
|
eleq1 |
|- ( y = <. w , 0R >. -> ( y e. RR <-> <. w , 0R >. e. RR ) ) |
59 |
57 58
|
bi2anan9 |
|- ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) -> ( ( x e. RR /\ y e. RR ) <-> ( <. z , 0R >. e. RR /\ <. w , 0R >. e. RR ) ) ) |
60 |
|
oveq1 |
|- ( x = <. z , 0R >. -> ( x + ( _i x. y ) ) = ( <. z , 0R >. + ( _i x. y ) ) ) |
61 |
|
oveq2 |
|- ( y = <. w , 0R >. -> ( _i x. y ) = ( _i x. <. w , 0R >. ) ) |
62 |
61
|
oveq2d |
|- ( y = <. w , 0R >. -> ( <. z , 0R >. + ( _i x. y ) ) = ( <. z , 0R >. + ( _i x. <. w , 0R >. ) ) ) |
63 |
60 62
|
sylan9eq |
|- ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) -> ( x + ( _i x. y ) ) = ( <. z , 0R >. + ( _i x. <. w , 0R >. ) ) ) |
64 |
63
|
eqeq2d |
|- ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) -> ( <. z , w >. = ( x + ( _i x. y ) ) <-> <. z , w >. = ( <. z , 0R >. + ( _i x. <. w , 0R >. ) ) ) ) |
65 |
59 64
|
anbi12d |
|- ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) -> ( ( ( x e. RR /\ y e. RR ) /\ <. z , w >. = ( x + ( _i x. y ) ) ) <-> ( ( <. z , 0R >. e. RR /\ <. w , 0R >. e. RR ) /\ <. z , w >. = ( <. z , 0R >. + ( _i x. <. w , 0R >. ) ) ) ) ) |
66 |
55 56 65
|
spc2ev |
|- ( ( ( <. z , 0R >. e. RR /\ <. w , 0R >. e. RR ) /\ <. z , w >. = ( <. z , 0R >. + ( _i x. <. w , 0R >. ) ) ) -> E. x E. y ( ( x e. RR /\ y e. RR ) /\ <. z , w >. = ( x + ( _i x. y ) ) ) ) |
67 |
7 54 66
|
syl2anc |
|- ( ( z e. R. /\ w e. R. ) -> E. x E. y ( ( x e. RR /\ y e. RR ) /\ <. z , w >. = ( x + ( _i x. y ) ) ) ) |
68 |
|
r2ex |
|- ( E. x e. RR E. y e. RR <. z , w >. = ( x + ( _i x. y ) ) <-> E. x E. y ( ( x e. RR /\ y e. RR ) /\ <. z , w >. = ( x + ( _i x. y ) ) ) ) |
69 |
67 68
|
sylibr |
|- ( ( z e. R. /\ w e. R. ) -> E. x e. RR E. y e. RR <. z , w >. = ( x + ( _i x. y ) ) ) |
70 |
1 3 69
|
optocl |
|- ( A e. CC -> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |