| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axcontlem2.1 |
|- D = { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } |
| 2 |
|
axcontlem2.2 |
|- F = { <. x , t >. | ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } |
| 3 |
|
opeq2 |
|- ( p = x -> <. Z , p >. = <. Z , x >. ) |
| 4 |
3
|
breq2d |
|- ( p = x -> ( U Btwn <. Z , p >. <-> U Btwn <. Z , x >. ) ) |
| 5 |
|
breq1 |
|- ( p = x -> ( p Btwn <. Z , U >. <-> x Btwn <. Z , U >. ) ) |
| 6 |
4 5
|
orbi12d |
|- ( p = x -> ( ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) <-> ( U Btwn <. Z , x >. \/ x Btwn <. Z , U >. ) ) ) |
| 7 |
6 1
|
elrab2 |
|- ( x e. D <-> ( x e. ( EE ` N ) /\ ( U Btwn <. Z , x >. \/ x Btwn <. Z , U >. ) ) ) |
| 8 |
|
simpll3 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) -> U e. ( EE ` N ) ) |
| 9 |
|
simpll2 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) -> Z e. ( EE ` N ) ) |
| 10 |
|
simpr |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) |
| 11 |
|
brbtwn |
|- ( ( U e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ x e. ( EE ` N ) ) -> ( U Btwn <. Z , x >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) |
| 12 |
8 9 10 11
|
syl3anc |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) -> ( U Btwn <. Z , x >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) |
| 13 |
12
|
biimpa |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ U Btwn <. Z , x >. ) -> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) |
| 14 |
|
simp-4r |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) -> Z =/= U ) |
| 15 |
|
oveq2 |
|- ( s = 0 -> ( 1 - s ) = ( 1 - 0 ) ) |
| 16 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 17 |
15 16
|
eqtrdi |
|- ( s = 0 -> ( 1 - s ) = 1 ) |
| 18 |
17
|
oveq1d |
|- ( s = 0 -> ( ( 1 - s ) x. ( Z ` i ) ) = ( 1 x. ( Z ` i ) ) ) |
| 19 |
|
oveq1 |
|- ( s = 0 -> ( s x. ( x ` i ) ) = ( 0 x. ( x ` i ) ) ) |
| 20 |
18 19
|
oveq12d |
|- ( s = 0 -> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) ) |
| 21 |
20
|
eqeq2d |
|- ( s = 0 -> ( ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) <-> ( U ` i ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) ) ) |
| 22 |
21
|
ralbidv |
|- ( s = 0 -> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) <-> A. i e. ( 1 ... N ) ( U ` i ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) ) ) |
| 23 |
22
|
biimpac |
|- ( ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) /\ s = 0 ) -> A. i e. ( 1 ... N ) ( U ` i ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) ) |
| 24 |
|
eqcom |
|- ( Z = U <-> U = Z ) |
| 25 |
8
|
adantr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) -> U e. ( EE ` N ) ) |
| 26 |
9
|
adantr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) -> Z e. ( EE ` N ) ) |
| 27 |
|
eqeefv |
|- ( ( U e. ( EE ` N ) /\ Z e. ( EE ` N ) ) -> ( U = Z <-> A. i e. ( 1 ... N ) ( U ` i ) = ( Z ` i ) ) ) |
| 28 |
25 26 27
|
syl2anc |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) -> ( U = Z <-> A. i e. ( 1 ... N ) ( U ` i ) = ( Z ` i ) ) ) |
| 29 |
9
|
ad2antrr |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ i e. ( 1 ... N ) ) -> Z e. ( EE ` N ) ) |
| 30 |
|
fveecn |
|- ( ( Z e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) |
| 31 |
29 30
|
sylancom |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) |
| 32 |
|
fveecn |
|- ( ( x e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( x ` i ) e. CC ) |
| 33 |
32
|
ad4ant24 |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ i e. ( 1 ... N ) ) -> ( x ` i ) e. CC ) |
| 34 |
|
mullid |
|- ( ( Z ` i ) e. CC -> ( 1 x. ( Z ` i ) ) = ( Z ` i ) ) |
| 35 |
|
mul02 |
|- ( ( x ` i ) e. CC -> ( 0 x. ( x ` i ) ) = 0 ) |
| 36 |
34 35
|
oveqan12d |
|- ( ( ( Z ` i ) e. CC /\ ( x ` i ) e. CC ) -> ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) = ( ( Z ` i ) + 0 ) ) |
| 37 |
|
addrid |
|- ( ( Z ` i ) e. CC -> ( ( Z ` i ) + 0 ) = ( Z ` i ) ) |
| 38 |
37
|
adantr |
|- ( ( ( Z ` i ) e. CC /\ ( x ` i ) e. CC ) -> ( ( Z ` i ) + 0 ) = ( Z ` i ) ) |
| 39 |
36 38
|
eqtrd |
|- ( ( ( Z ` i ) e. CC /\ ( x ` i ) e. CC ) -> ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) = ( Z ` i ) ) |
| 40 |
39
|
eqeq2d |
|- ( ( ( Z ` i ) e. CC /\ ( x ` i ) e. CC ) -> ( ( U ` i ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) <-> ( U ` i ) = ( Z ` i ) ) ) |
| 41 |
31 33 40
|
syl2anc |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ i e. ( 1 ... N ) ) -> ( ( U ` i ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) <-> ( U ` i ) = ( Z ` i ) ) ) |
| 42 |
41
|
ralbidva |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) -> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) <-> A. i e. ( 1 ... N ) ( U ` i ) = ( Z ` i ) ) ) |
| 43 |
28 42
|
bitr4d |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) -> ( U = Z <-> A. i e. ( 1 ... N ) ( U ` i ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) ) ) |
| 44 |
24 43
|
bitrid |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( U ` i ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( x ` i ) ) ) ) ) |
| 45 |
23 44
|
imbitrrid |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) -> ( ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) /\ s = 0 ) -> Z = U ) ) |
| 46 |
45
|
expdimp |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) -> ( s = 0 -> Z = U ) ) |
| 47 |
46
|
necon3d |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) -> ( Z =/= U -> s =/= 0 ) ) |
| 48 |
14 47
|
mpd |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) -> s =/= 0 ) |
| 49 |
|
elicc01 |
|- ( s e. ( 0 [,] 1 ) <-> ( s e. RR /\ 0 <_ s /\ s <_ 1 ) ) |
| 50 |
49
|
simp1bi |
|- ( s e. ( 0 [,] 1 ) -> s e. RR ) |
| 51 |
|
rereccl |
|- ( ( s e. RR /\ s =/= 0 ) -> ( 1 / s ) e. RR ) |
| 52 |
50 51
|
sylan |
|- ( ( s e. ( 0 [,] 1 ) /\ s =/= 0 ) -> ( 1 / s ) e. RR ) |
| 53 |
50
|
adantr |
|- ( ( s e. ( 0 [,] 1 ) /\ s =/= 0 ) -> s e. RR ) |
| 54 |
49
|
simp2bi |
|- ( s e. ( 0 [,] 1 ) -> 0 <_ s ) |
| 55 |
54
|
adantr |
|- ( ( s e. ( 0 [,] 1 ) /\ s =/= 0 ) -> 0 <_ s ) |
| 56 |
|
simpr |
|- ( ( s e. ( 0 [,] 1 ) /\ s =/= 0 ) -> s =/= 0 ) |
| 57 |
53 55 56
|
ne0gt0d |
|- ( ( s e. ( 0 [,] 1 ) /\ s =/= 0 ) -> 0 < s ) |
| 58 |
|
1re |
|- 1 e. RR |
| 59 |
|
0le1 |
|- 0 <_ 1 |
| 60 |
|
divge0 |
|- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( s e. RR /\ 0 < s ) ) -> 0 <_ ( 1 / s ) ) |
| 61 |
58 59 60
|
mpanl12 |
|- ( ( s e. RR /\ 0 < s ) -> 0 <_ ( 1 / s ) ) |
| 62 |
53 57 61
|
syl2anc |
|- ( ( s e. ( 0 [,] 1 ) /\ s =/= 0 ) -> 0 <_ ( 1 / s ) ) |
| 63 |
|
elrege0 |
|- ( ( 1 / s ) e. ( 0 [,) +oo ) <-> ( ( 1 / s ) e. RR /\ 0 <_ ( 1 / s ) ) ) |
| 64 |
52 62 63
|
sylanbrc |
|- ( ( s e. ( 0 [,] 1 ) /\ s =/= 0 ) -> ( 1 / s ) e. ( 0 [,) +oo ) ) |
| 65 |
64
|
adantll |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) -> ( 1 / s ) e. ( 0 [,) +oo ) ) |
| 66 |
50
|
ad3antlr |
|- ( ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) /\ i e. ( 1 ... N ) ) -> s e. RR ) |
| 67 |
66
|
recnd |
|- ( ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) /\ i e. ( 1 ... N ) ) -> s e. CC ) |
| 68 |
|
simplr |
|- ( ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) /\ i e. ( 1 ... N ) ) -> s =/= 0 ) |
| 69 |
32
|
ad5ant25 |
|- ( ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) /\ i e. ( 1 ... N ) ) -> ( x ` i ) e. CC ) |
| 70 |
9
|
ad3antrrr |
|- ( ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) /\ i e. ( 1 ... N ) ) -> Z e. ( EE ` N ) ) |
| 71 |
70 30
|
sylancom |
|- ( ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) |
| 72 |
|
ax-1cn |
|- 1 e. CC |
| 73 |
|
reccl |
|- ( ( s e. CC /\ s =/= 0 ) -> ( 1 / s ) e. CC ) |
| 74 |
|
subcl |
|- ( ( 1 e. CC /\ ( 1 / s ) e. CC ) -> ( 1 - ( 1 / s ) ) e. CC ) |
| 75 |
72 73 74
|
sylancr |
|- ( ( s e. CC /\ s =/= 0 ) -> ( 1 - ( 1 / s ) ) e. CC ) |
| 76 |
75
|
adantr |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( 1 - ( 1 / s ) ) e. CC ) |
| 77 |
|
subcl |
|- ( ( 1 e. CC /\ s e. CC ) -> ( 1 - s ) e. CC ) |
| 78 |
72 77
|
mpan |
|- ( s e. CC -> ( 1 - s ) e. CC ) |
| 79 |
78
|
adantr |
|- ( ( s e. CC /\ s =/= 0 ) -> ( 1 - s ) e. CC ) |
| 80 |
73 79
|
mulcld |
|- ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 / s ) x. ( 1 - s ) ) e. CC ) |
| 81 |
80
|
adantr |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( 1 / s ) x. ( 1 - s ) ) e. CC ) |
| 82 |
|
simprr |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( Z ` i ) e. CC ) |
| 83 |
76 81 82
|
adddird |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) x. ( 1 - s ) ) ) x. ( Z ` i ) ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( ( 1 / s ) x. ( 1 - s ) ) x. ( Z ` i ) ) ) ) |
| 84 |
|
simpl |
|- ( ( s e. CC /\ s =/= 0 ) -> s e. CC ) |
| 85 |
|
subdi |
|- ( ( ( 1 / s ) e. CC /\ 1 e. CC /\ s e. CC ) -> ( ( 1 / s ) x. ( 1 - s ) ) = ( ( ( 1 / s ) x. 1 ) - ( ( 1 / s ) x. s ) ) ) |
| 86 |
72 85
|
mp3an2 |
|- ( ( ( 1 / s ) e. CC /\ s e. CC ) -> ( ( 1 / s ) x. ( 1 - s ) ) = ( ( ( 1 / s ) x. 1 ) - ( ( 1 / s ) x. s ) ) ) |
| 87 |
73 84 86
|
syl2anc |
|- ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 / s ) x. ( 1 - s ) ) = ( ( ( 1 / s ) x. 1 ) - ( ( 1 / s ) x. s ) ) ) |
| 88 |
87
|
oveq2d |
|- ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) x. ( 1 - s ) ) ) = ( ( 1 - ( 1 / s ) ) + ( ( ( 1 / s ) x. 1 ) - ( ( 1 / s ) x. s ) ) ) ) |
| 89 |
73
|
mulridd |
|- ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 / s ) x. 1 ) = ( 1 / s ) ) |
| 90 |
|
recid2 |
|- ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 / s ) x. s ) = 1 ) |
| 91 |
89 90
|
oveq12d |
|- ( ( s e. CC /\ s =/= 0 ) -> ( ( ( 1 / s ) x. 1 ) - ( ( 1 / s ) x. s ) ) = ( ( 1 / s ) - 1 ) ) |
| 92 |
91
|
oveq2d |
|- ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 - ( 1 / s ) ) + ( ( ( 1 / s ) x. 1 ) - ( ( 1 / s ) x. s ) ) ) = ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) - 1 ) ) ) |
| 93 |
|
addsubass |
|- ( ( ( 1 - ( 1 / s ) ) e. CC /\ ( 1 / s ) e. CC /\ 1 e. CC ) -> ( ( ( 1 - ( 1 / s ) ) + ( 1 / s ) ) - 1 ) = ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) - 1 ) ) ) |
| 94 |
72 93
|
mp3an3 |
|- ( ( ( 1 - ( 1 / s ) ) e. CC /\ ( 1 / s ) e. CC ) -> ( ( ( 1 - ( 1 / s ) ) + ( 1 / s ) ) - 1 ) = ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) - 1 ) ) ) |
| 95 |
75 73 94
|
syl2anc |
|- ( ( s e. CC /\ s =/= 0 ) -> ( ( ( 1 - ( 1 / s ) ) + ( 1 / s ) ) - 1 ) = ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) - 1 ) ) ) |
| 96 |
75 73
|
addcld |
|- ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 - ( 1 / s ) ) + ( 1 / s ) ) e. CC ) |
| 97 |
|
npcan |
|- ( ( 1 e. CC /\ ( 1 / s ) e. CC ) -> ( ( 1 - ( 1 / s ) ) + ( 1 / s ) ) = 1 ) |
| 98 |
72 73 97
|
sylancr |
|- ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 - ( 1 / s ) ) + ( 1 / s ) ) = 1 ) |
| 99 |
96 98
|
subeq0bd |
|- ( ( s e. CC /\ s =/= 0 ) -> ( ( ( 1 - ( 1 / s ) ) + ( 1 / s ) ) - 1 ) = 0 ) |
| 100 |
92 95 99
|
3eqtr2d |
|- ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 - ( 1 / s ) ) + ( ( ( 1 / s ) x. 1 ) - ( ( 1 / s ) x. s ) ) ) = 0 ) |
| 101 |
88 100
|
eqtrd |
|- ( ( s e. CC /\ s =/= 0 ) -> ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) x. ( 1 - s ) ) ) = 0 ) |
| 102 |
101
|
adantr |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) x. ( 1 - s ) ) ) = 0 ) |
| 103 |
102
|
oveq1d |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / s ) ) + ( ( 1 / s ) x. ( 1 - s ) ) ) x. ( Z ` i ) ) = ( 0 x. ( Z ` i ) ) ) |
| 104 |
73
|
adantr |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( 1 / s ) e. CC ) |
| 105 |
78
|
ad2antrr |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( 1 - s ) e. CC ) |
| 106 |
104 105 82
|
mulassd |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 / s ) x. ( 1 - s ) ) x. ( Z ` i ) ) = ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) |
| 107 |
106
|
oveq2d |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( ( 1 / s ) x. ( 1 - s ) ) x. ( Z ` i ) ) ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) ) |
| 108 |
83 103 107
|
3eqtr3rd |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) = ( 0 x. ( Z ` i ) ) ) |
| 109 |
|
mul02 |
|- ( ( Z ` i ) e. CC -> ( 0 x. ( Z ` i ) ) = 0 ) |
| 110 |
109
|
ad2antll |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( 0 x. ( Z ` i ) ) = 0 ) |
| 111 |
108 110
|
eqtrd |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) = 0 ) |
| 112 |
|
simpll |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> s e. CC ) |
| 113 |
|
simprl |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( x ` i ) e. CC ) |
| 114 |
104 112 113
|
mulassd |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 / s ) x. s ) x. ( x ` i ) ) = ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) ) |
| 115 |
90
|
oveq1d |
|- ( ( s e. CC /\ s =/= 0 ) -> ( ( ( 1 / s ) x. s ) x. ( x ` i ) ) = ( 1 x. ( x ` i ) ) ) |
| 116 |
|
mullid |
|- ( ( x ` i ) e. CC -> ( 1 x. ( x ` i ) ) = ( x ` i ) ) |
| 117 |
116
|
adantr |
|- ( ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) -> ( 1 x. ( x ` i ) ) = ( x ` i ) ) |
| 118 |
115 117
|
sylan9eq |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 / s ) x. s ) x. ( x ` i ) ) = ( x ` i ) ) |
| 119 |
114 118
|
eqtr3d |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) = ( x ` i ) ) |
| 120 |
111 119
|
oveq12d |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) + ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) ) = ( 0 + ( x ` i ) ) ) |
| 121 |
76 82
|
mulcld |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) e. CC ) |
| 122 |
|
simpr |
|- ( ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) -> ( Z ` i ) e. CC ) |
| 123 |
|
mulcl |
|- ( ( ( 1 - s ) e. CC /\ ( Z ` i ) e. CC ) -> ( ( 1 - s ) x. ( Z ` i ) ) e. CC ) |
| 124 |
79 122 123
|
syl2an |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( 1 - s ) x. ( Z ` i ) ) e. CC ) |
| 125 |
104 124
|
mulcld |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) e. CC ) |
| 126 |
|
mulcl |
|- ( ( s e. CC /\ ( x ` i ) e. CC ) -> ( s x. ( x ` i ) ) e. CC ) |
| 127 |
126
|
ad2ant2r |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( s x. ( x ` i ) ) e. CC ) |
| 128 |
104 127
|
mulcld |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) e. CC ) |
| 129 |
121 125 128
|
addassd |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) + ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) + ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) ) ) ) |
| 130 |
104 124 127
|
adddid |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) = ( ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) + ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) ) ) |
| 131 |
130
|
oveq2d |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) + ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) ) ) ) |
| 132 |
129 131
|
eqtr4d |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) + ( ( 1 / s ) x. ( s x. ( x ` i ) ) ) ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) |
| 133 |
|
addlid |
|- ( ( x ` i ) e. CC -> ( 0 + ( x ` i ) ) = ( x ` i ) ) |
| 134 |
133
|
ad2antrl |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( 0 + ( x ` i ) ) = ( x ` i ) ) |
| 135 |
120 132 134
|
3eqtr3rd |
|- ( ( ( s e. CC /\ s =/= 0 ) /\ ( ( x ` i ) e. CC /\ ( Z ` i ) e. CC ) ) -> ( x ` i ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) |
| 136 |
67 68 69 71 135
|
syl22anc |
|- ( ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) /\ i e. ( 1 ... N ) ) -> ( x ` i ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) |
| 137 |
136
|
ralrimiva |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) -> A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) |
| 138 |
|
oveq2 |
|- ( t = ( 1 / s ) -> ( 1 - t ) = ( 1 - ( 1 / s ) ) ) |
| 139 |
138
|
oveq1d |
|- ( t = ( 1 / s ) -> ( ( 1 - t ) x. ( Z ` i ) ) = ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) ) |
| 140 |
|
oveq1 |
|- ( t = ( 1 / s ) -> ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) = ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) |
| 141 |
139 140
|
oveq12d |
|- ( t = ( 1 / s ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) |
| 142 |
141
|
eqeq2d |
|- ( t = ( 1 / s ) -> ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) <-> ( x ` i ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) ) |
| 143 |
142
|
ralbidv |
|- ( t = ( 1 / s ) -> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) <-> A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) ) |
| 144 |
143
|
rspcev |
|- ( ( ( 1 / s ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - ( 1 / s ) ) x. ( Z ` i ) ) + ( ( 1 / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) |
| 145 |
65 137 144
|
syl2anc |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) |
| 146 |
|
oveq2 |
|- ( ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) -> ( t x. ( U ` i ) ) = ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) |
| 147 |
146
|
oveq2d |
|- ( ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) |
| 148 |
147
|
eqeq2d |
|- ( ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) -> ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) ) |
| 149 |
148
|
ralimi |
|- ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) -> A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) ) |
| 150 |
|
ralbi |
|- ( A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) -> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) ) |
| 151 |
149 150
|
syl |
|- ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) -> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) ) |
| 152 |
151
|
rexbidv |
|- ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) -> ( E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) ) ) ) |
| 153 |
145 152
|
syl5ibrcom |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ s =/= 0 ) -> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 154 |
153
|
impancom |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) -> ( s =/= 0 -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 155 |
48 154
|
mpd |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ s e. ( 0 [,] 1 ) ) /\ A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) |
| 156 |
155
|
r19.29an |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( x ` i ) ) ) ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) |
| 157 |
13 156
|
syldan |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ U Btwn <. Z , x >. ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) |
| 158 |
|
3simpa |
|- ( ( x e. RR /\ 0 <_ x /\ x <_ 1 ) -> ( x e. RR /\ 0 <_ x ) ) |
| 159 |
|
elicc01 |
|- ( x e. ( 0 [,] 1 ) <-> ( x e. RR /\ 0 <_ x /\ x <_ 1 ) ) |
| 160 |
|
elrege0 |
|- ( x e. ( 0 [,) +oo ) <-> ( x e. RR /\ 0 <_ x ) ) |
| 161 |
158 159 160
|
3imtr4i |
|- ( x e. ( 0 [,] 1 ) -> x e. ( 0 [,) +oo ) ) |
| 162 |
161
|
ssriv |
|- ( 0 [,] 1 ) C_ ( 0 [,) +oo ) |
| 163 |
|
brbtwn |
|- ( ( x e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) -> ( x Btwn <. Z , U >. <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 164 |
10 9 8 163
|
syl3anc |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. Z , U >. <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 165 |
164
|
biimpa |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ x Btwn <. Z , U >. ) -> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) |
| 166 |
|
ssrexv |
|- ( ( 0 [,] 1 ) C_ ( 0 [,) +oo ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 167 |
162 165 166
|
mpsyl |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ x Btwn <. Z , U >. ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) |
| 168 |
157 167
|
jaodan |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. ( EE ` N ) ) /\ ( U Btwn <. Z , x >. \/ x Btwn <. Z , U >. ) ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) |
| 169 |
168
|
anasss |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( x e. ( EE ` N ) /\ ( U Btwn <. Z , x >. \/ x Btwn <. Z , U >. ) ) ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) |
| 170 |
7 169
|
sylan2b |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. D ) -> E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) |
| 171 |
|
r19.26 |
|- ( A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) <-> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) ) |
| 172 |
|
eqtr2 |
|- ( ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) |
| 173 |
172
|
ralimi |
|- ( A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) |
| 174 |
171 173
|
sylbir |
|- ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) |
| 175 |
|
elrege0 |
|- ( t e. ( 0 [,) +oo ) <-> ( t e. RR /\ 0 <_ t ) ) |
| 176 |
175
|
simplbi |
|- ( t e. ( 0 [,) +oo ) -> t e. RR ) |
| 177 |
176
|
recnd |
|- ( t e. ( 0 [,) +oo ) -> t e. CC ) |
| 178 |
|
elrege0 |
|- ( s e. ( 0 [,) +oo ) <-> ( s e. RR /\ 0 <_ s ) ) |
| 179 |
178
|
simplbi |
|- ( s e. ( 0 [,) +oo ) -> s e. RR ) |
| 180 |
179
|
recnd |
|- ( s e. ( 0 [,) +oo ) -> s e. CC ) |
| 181 |
177 180
|
anim12i |
|- ( ( t e. ( 0 [,) +oo ) /\ s e. ( 0 [,) +oo ) ) -> ( t e. CC /\ s e. CC ) ) |
| 182 |
|
simplr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) /\ i e. ( 1 ... N ) ) -> ( t e. CC /\ s e. CC ) ) |
| 183 |
|
simpl2 |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> Z e. ( EE ` N ) ) |
| 184 |
183
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) /\ i e. ( 1 ... N ) ) -> Z e. ( EE ` N ) ) |
| 185 |
184 30
|
sylancom |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) |
| 186 |
|
simpl3 |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> U e. ( EE ` N ) ) |
| 187 |
186
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) /\ i e. ( 1 ... N ) ) -> U e. ( EE ` N ) ) |
| 188 |
|
fveecn |
|- ( ( U e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( U ` i ) e. CC ) |
| 189 |
187 188
|
sylancom |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) /\ i e. ( 1 ... N ) ) -> ( U ` i ) e. CC ) |
| 190 |
|
subcl |
|- ( ( 1 e. CC /\ t e. CC ) -> ( 1 - t ) e. CC ) |
| 191 |
72 190
|
mpan |
|- ( t e. CC -> ( 1 - t ) e. CC ) |
| 192 |
191
|
adantr |
|- ( ( t e. CC /\ s e. CC ) -> ( 1 - t ) e. CC ) |
| 193 |
|
simpl |
|- ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) -> ( Z ` i ) e. CC ) |
| 194 |
|
mulcl |
|- ( ( ( 1 - t ) e. CC /\ ( Z ` i ) e. CC ) -> ( ( 1 - t ) x. ( Z ` i ) ) e. CC ) |
| 195 |
192 193 194
|
syl2an |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 - t ) x. ( Z ` i ) ) e. CC ) |
| 196 |
|
mulcl |
|- ( ( t e. CC /\ ( U ` i ) e. CC ) -> ( t x. ( U ` i ) ) e. CC ) |
| 197 |
196
|
ad2ant2rl |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( t x. ( U ` i ) ) e. CC ) |
| 198 |
78
|
adantl |
|- ( ( t e. CC /\ s e. CC ) -> ( 1 - s ) e. CC ) |
| 199 |
198 193 123
|
syl2an |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 - s ) x. ( Z ` i ) ) e. CC ) |
| 200 |
|
mulcl |
|- ( ( s e. CC /\ ( U ` i ) e. CC ) -> ( s x. ( U ` i ) ) e. CC ) |
| 201 |
200
|
ad2ant2l |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( s x. ( U ` i ) ) e. CC ) |
| 202 |
195 197 199 201
|
addsubeq4d |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) <-> ( ( ( 1 - s ) x. ( Z ` i ) ) - ( ( 1 - t ) x. ( Z ` i ) ) ) = ( ( t x. ( U ` i ) ) - ( s x. ( U ` i ) ) ) ) ) |
| 203 |
|
nnncan1 |
|- ( ( 1 e. CC /\ s e. CC /\ t e. CC ) -> ( ( 1 - s ) - ( 1 - t ) ) = ( t - s ) ) |
| 204 |
72 203
|
mp3an1 |
|- ( ( s e. CC /\ t e. CC ) -> ( ( 1 - s ) - ( 1 - t ) ) = ( t - s ) ) |
| 205 |
204
|
ancoms |
|- ( ( t e. CC /\ s e. CC ) -> ( ( 1 - s ) - ( 1 - t ) ) = ( t - s ) ) |
| 206 |
205
|
oveq1d |
|- ( ( t e. CC /\ s e. CC ) -> ( ( ( 1 - s ) - ( 1 - t ) ) x. ( Z ` i ) ) = ( ( t - s ) x. ( Z ` i ) ) ) |
| 207 |
206
|
adantr |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 - s ) - ( 1 - t ) ) x. ( Z ` i ) ) = ( ( t - s ) x. ( Z ` i ) ) ) |
| 208 |
78
|
ad2antlr |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( 1 - s ) e. CC ) |
| 209 |
191
|
ad2antrr |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( 1 - t ) e. CC ) |
| 210 |
|
simprl |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( Z ` i ) e. CC ) |
| 211 |
208 209 210
|
subdird |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 - s ) - ( 1 - t ) ) x. ( Z ` i ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) - ( ( 1 - t ) x. ( Z ` i ) ) ) ) |
| 212 |
207 211
|
eqtr3d |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( t - s ) x. ( Z ` i ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) - ( ( 1 - t ) x. ( Z ` i ) ) ) ) |
| 213 |
|
simpll |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> t e. CC ) |
| 214 |
|
simplr |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> s e. CC ) |
| 215 |
|
simprr |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( U ` i ) e. CC ) |
| 216 |
213 214 215
|
subdird |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( t - s ) x. ( U ` i ) ) = ( ( t x. ( U ` i ) ) - ( s x. ( U ` i ) ) ) ) |
| 217 |
212 216
|
eqeq12d |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( t - s ) x. ( Z ` i ) ) = ( ( t - s ) x. ( U ` i ) ) <-> ( ( ( 1 - s ) x. ( Z ` i ) ) - ( ( 1 - t ) x. ( Z ` i ) ) ) = ( ( t x. ( U ` i ) ) - ( s x. ( U ` i ) ) ) ) ) |
| 218 |
|
subcl |
|- ( ( t e. CC /\ s e. CC ) -> ( t - s ) e. CC ) |
| 219 |
218
|
adantr |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( t - s ) e. CC ) |
| 220 |
|
mulcan1g |
|- ( ( ( t - s ) e. CC /\ ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) -> ( ( ( t - s ) x. ( Z ` i ) ) = ( ( t - s ) x. ( U ` i ) ) <-> ( ( t - s ) = 0 \/ ( Z ` i ) = ( U ` i ) ) ) ) |
| 221 |
219 210 215 220
|
syl3anc |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( t - s ) x. ( Z ` i ) ) = ( ( t - s ) x. ( U ` i ) ) <-> ( ( t - s ) = 0 \/ ( Z ` i ) = ( U ` i ) ) ) ) |
| 222 |
202 217 221
|
3bitr2d |
|- ( ( ( t e. CC /\ s e. CC ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) <-> ( ( t - s ) = 0 \/ ( Z ` i ) = ( U ` i ) ) ) ) |
| 223 |
182 185 189 222
|
syl12anc |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) <-> ( ( t - s ) = 0 \/ ( Z ` i ) = ( U ` i ) ) ) ) |
| 224 |
223
|
ralbidva |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( t - s ) = 0 \/ ( Z ` i ) = ( U ` i ) ) ) ) |
| 225 |
|
r19.32v |
|- ( A. i e. ( 1 ... N ) ( ( t - s ) = 0 \/ ( Z ` i ) = ( U ` i ) ) <-> ( ( t - s ) = 0 \/ A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) |
| 226 |
|
simplr |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> Z =/= U ) |
| 227 |
226
|
neneqd |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> -. Z = U ) |
| 228 |
|
simpll2 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> Z e. ( EE ` N ) ) |
| 229 |
|
simpll3 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> U e. ( EE ` N ) ) |
| 230 |
|
eqeefv |
|- ( ( Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) |
| 231 |
228 229 230
|
syl2anc |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) |
| 232 |
227 231
|
mtbid |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> -. A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) |
| 233 |
|
orel2 |
|- ( -. A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) -> ( ( ( t - s ) = 0 \/ A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) -> ( t - s ) = 0 ) ) |
| 234 |
232 233
|
syl |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> ( ( ( t - s ) = 0 \/ A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) -> ( t - s ) = 0 ) ) |
| 235 |
|
subeq0 |
|- ( ( t e. CC /\ s e. CC ) -> ( ( t - s ) = 0 <-> t = s ) ) |
| 236 |
235
|
adantl |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> ( ( t - s ) = 0 <-> t = s ) ) |
| 237 |
234 236
|
sylibd |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> ( ( ( t - s ) = 0 \/ A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) -> t = s ) ) |
| 238 |
225 237
|
biimtrid |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> ( A. i e. ( 1 ... N ) ( ( t - s ) = 0 \/ ( Z ` i ) = ( U ` i ) ) -> t = s ) ) |
| 239 |
224 238
|
sylbid |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. CC /\ s e. CC ) ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) -> t = s ) ) |
| 240 |
181 239
|
sylan2 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. ( 0 [,) +oo ) /\ s e. ( 0 [,) +oo ) ) ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) -> t = s ) ) |
| 241 |
174 240
|
syl5 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( t e. ( 0 [,) +oo ) /\ s e. ( 0 [,) +oo ) ) ) -> ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) -> t = s ) ) |
| 242 |
241
|
ralrimivva |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> A. t e. ( 0 [,) +oo ) A. s e. ( 0 [,) +oo ) ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) -> t = s ) ) |
| 243 |
242
|
adantr |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. D ) -> A. t e. ( 0 [,) +oo ) A. s e. ( 0 [,) +oo ) ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) -> t = s ) ) |
| 244 |
|
oveq2 |
|- ( t = s -> ( 1 - t ) = ( 1 - s ) ) |
| 245 |
244
|
oveq1d |
|- ( t = s -> ( ( 1 - t ) x. ( Z ` i ) ) = ( ( 1 - s ) x. ( Z ` i ) ) ) |
| 246 |
|
oveq1 |
|- ( t = s -> ( t x. ( U ` i ) ) = ( s x. ( U ` i ) ) ) |
| 247 |
245 246
|
oveq12d |
|- ( t = s -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) |
| 248 |
247
|
eqeq2d |
|- ( t = s -> ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) ) |
| 249 |
248
|
ralbidv |
|- ( t = s -> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) ) |
| 250 |
249
|
reu4 |
|- ( E! t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( E. t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. t e. ( 0 [,) +oo ) A. s e. ( 0 [,) +oo ) ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) -> t = s ) ) ) |
| 251 |
170 243 250
|
sylanbrc |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. D ) -> E! t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) |
| 252 |
|
df-reu |
|- ( E! t e. ( 0 [,) +oo ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> E! t ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 253 |
251 252
|
sylib |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ x e. D ) -> E! t ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 254 |
253
|
ralrimiva |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> A. x e. D E! t ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 255 |
2
|
fnopabg |
|- ( A. x e. D E! t ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) <-> F Fn D ) |
| 256 |
254 255
|
sylib |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> F Fn D ) |
| 257 |
176
|
ad2antlr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ k e. ( 1 ... N ) ) -> t e. RR ) |
| 258 |
183
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ k e. ( 1 ... N ) ) -> Z e. ( EE ` N ) ) |
| 259 |
|
fveere |
|- ( ( Z e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( Z ` k ) e. RR ) |
| 260 |
258 259
|
sylancom |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ k e. ( 1 ... N ) ) -> ( Z ` k ) e. RR ) |
| 261 |
186
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ k e. ( 1 ... N ) ) -> U e. ( EE ` N ) ) |
| 262 |
|
fveere |
|- ( ( U e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( U ` k ) e. RR ) |
| 263 |
261 262
|
sylancom |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ k e. ( 1 ... N ) ) -> ( U ` k ) e. RR ) |
| 264 |
|
resubcl |
|- ( ( 1 e. RR /\ t e. RR ) -> ( 1 - t ) e. RR ) |
| 265 |
58 264
|
mpan |
|- ( t e. RR -> ( 1 - t ) e. RR ) |
| 266 |
|
remulcl |
|- ( ( ( 1 - t ) e. RR /\ ( Z ` k ) e. RR ) -> ( ( 1 - t ) x. ( Z ` k ) ) e. RR ) |
| 267 |
265 266
|
sylan |
|- ( ( t e. RR /\ ( Z ` k ) e. RR ) -> ( ( 1 - t ) x. ( Z ` k ) ) e. RR ) |
| 268 |
267
|
3adant3 |
|- ( ( t e. RR /\ ( Z ` k ) e. RR /\ ( U ` k ) e. RR ) -> ( ( 1 - t ) x. ( Z ` k ) ) e. RR ) |
| 269 |
|
remulcl |
|- ( ( t e. RR /\ ( U ` k ) e. RR ) -> ( t x. ( U ` k ) ) e. RR ) |
| 270 |
269
|
3adant2 |
|- ( ( t e. RR /\ ( Z ` k ) e. RR /\ ( U ` k ) e. RR ) -> ( t x. ( U ` k ) ) e. RR ) |
| 271 |
268 270
|
readdcld |
|- ( ( t e. RR /\ ( Z ` k ) e. RR /\ ( U ` k ) e. RR ) -> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) e. RR ) |
| 272 |
257 260 263 271
|
syl3anc |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ k e. ( 1 ... N ) ) -> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) e. RR ) |
| 273 |
272
|
ralrimiva |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> A. k e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) e. RR ) |
| 274 |
|
simpll1 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> N e. NN ) |
| 275 |
|
mptelee |
|- ( N e. NN -> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) e. RR ) ) |
| 276 |
274 275
|
syl |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) e. RR ) ) |
| 277 |
273 276
|
mpbird |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. ( EE ` N ) ) |
| 278 |
|
letric |
|- ( ( 1 e. RR /\ t e. RR ) -> ( 1 <_ t \/ t <_ 1 ) ) |
| 279 |
58 176 278
|
sylancr |
|- ( t e. ( 0 [,) +oo ) -> ( 1 <_ t \/ t <_ 1 ) ) |
| 280 |
279
|
adantl |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> ( 1 <_ t \/ t <_ 1 ) ) |
| 281 |
|
simpr |
|- ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> 1 <_ t ) |
| 282 |
176
|
adantr |
|- ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> t e. RR ) |
| 283 |
|
0red |
|- ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> 0 e. RR ) |
| 284 |
|
1red |
|- ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> 1 e. RR ) |
| 285 |
|
0lt1 |
|- 0 < 1 |
| 286 |
285
|
a1i |
|- ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> 0 < 1 ) |
| 287 |
283 284 282 286 281
|
ltletrd |
|- ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> 0 < t ) |
| 288 |
|
divelunit |
|- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( t e. RR /\ 0 < t ) ) -> ( ( 1 / t ) e. ( 0 [,] 1 ) <-> 1 <_ t ) ) |
| 289 |
58 59 288
|
mpanl12 |
|- ( ( t e. RR /\ 0 < t ) -> ( ( 1 / t ) e. ( 0 [,] 1 ) <-> 1 <_ t ) ) |
| 290 |
282 287 289
|
syl2anc |
|- ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> ( ( 1 / t ) e. ( 0 [,] 1 ) <-> 1 <_ t ) ) |
| 291 |
281 290
|
mpbird |
|- ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> ( 1 / t ) e. ( 0 [,] 1 ) ) |
| 292 |
291
|
adantll |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> ( 1 / t ) e. ( 0 [,] 1 ) ) |
| 293 |
176
|
ad3antlr |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) /\ i e. ( 1 ... N ) ) -> t e. RR ) |
| 294 |
293
|
recnd |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) /\ i e. ( 1 ... N ) ) -> t e. CC ) |
| 295 |
287
|
gt0ne0d |
|- ( ( t e. ( 0 [,) +oo ) /\ 1 <_ t ) -> t =/= 0 ) |
| 296 |
295
|
adantll |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> t =/= 0 ) |
| 297 |
296
|
adantr |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) /\ i e. ( 1 ... N ) ) -> t =/= 0 ) |
| 298 |
183
|
ad3antrrr |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) /\ i e. ( 1 ... N ) ) -> Z e. ( EE ` N ) ) |
| 299 |
298 30
|
sylancom |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) |
| 300 |
186
|
ad3antrrr |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) /\ i e. ( 1 ... N ) ) -> U e. ( EE ` N ) ) |
| 301 |
300 188
|
sylancom |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) /\ i e. ( 1 ... N ) ) -> ( U ` i ) e. CC ) |
| 302 |
|
reccl |
|- ( ( t e. CC /\ t =/= 0 ) -> ( 1 / t ) e. CC ) |
| 303 |
302
|
adantr |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( 1 / t ) e. CC ) |
| 304 |
191
|
adantr |
|- ( ( t e. CC /\ t =/= 0 ) -> ( 1 - t ) e. CC ) |
| 305 |
304 193 194
|
syl2an |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 - t ) x. ( Z ` i ) ) e. CC ) |
| 306 |
196
|
ad2ant2rl |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( t x. ( U ` i ) ) e. CC ) |
| 307 |
303 305 306
|
adddid |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) = ( ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) + ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) ) ) |
| 308 |
307
|
oveq2d |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) + ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) ) ) ) |
| 309 |
|
subcl |
|- ( ( 1 e. CC /\ ( 1 / t ) e. CC ) -> ( 1 - ( 1 / t ) ) e. CC ) |
| 310 |
72 302 309
|
sylancr |
|- ( ( t e. CC /\ t =/= 0 ) -> ( 1 - ( 1 / t ) ) e. CC ) |
| 311 |
|
mulcl |
|- ( ( ( 1 - ( 1 / t ) ) e. CC /\ ( Z ` i ) e. CC ) -> ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) e. CC ) |
| 312 |
310 193 311
|
syl2an |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) e. CC ) |
| 313 |
303 305
|
mulcld |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) e. CC ) |
| 314 |
|
recid2 |
|- ( ( t e. CC /\ t =/= 0 ) -> ( ( 1 / t ) x. t ) = 1 ) |
| 315 |
314
|
oveq1d |
|- ( ( t e. CC /\ t =/= 0 ) -> ( ( ( 1 / t ) x. t ) x. ( U ` i ) ) = ( 1 x. ( U ` i ) ) ) |
| 316 |
315
|
adantr |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 / t ) x. t ) x. ( U ` i ) ) = ( 1 x. ( U ` i ) ) ) |
| 317 |
|
simpll |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> t e. CC ) |
| 318 |
|
simprr |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( U ` i ) e. CC ) |
| 319 |
303 317 318
|
mulassd |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 / t ) x. t ) x. ( U ` i ) ) = ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) ) |
| 320 |
|
mullid |
|- ( ( U ` i ) e. CC -> ( 1 x. ( U ` i ) ) = ( U ` i ) ) |
| 321 |
320
|
ad2antll |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( 1 x. ( U ` i ) ) = ( U ` i ) ) |
| 322 |
316 319 321
|
3eqtr3d |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) = ( U ` i ) ) |
| 323 |
322 318
|
eqeltrd |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) e. CC ) |
| 324 |
312 313 323
|
addassd |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) + ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) + ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) ) ) ) |
| 325 |
310
|
adantr |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( 1 - ( 1 / t ) ) e. CC ) |
| 326 |
302 304
|
mulcld |
|- ( ( t e. CC /\ t =/= 0 ) -> ( ( 1 / t ) x. ( 1 - t ) ) e. CC ) |
| 327 |
326
|
adantr |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 / t ) x. ( 1 - t ) ) e. CC ) |
| 328 |
|
simprl |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( Z ` i ) e. CC ) |
| 329 |
325 327 328
|
adddird |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) x. ( 1 - t ) ) ) x. ( Z ` i ) ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( ( 1 / t ) x. ( 1 - t ) ) x. ( Z ` i ) ) ) ) |
| 330 |
|
simpl |
|- ( ( t e. CC /\ t =/= 0 ) -> t e. CC ) |
| 331 |
|
subdi |
|- ( ( ( 1 / t ) e. CC /\ 1 e. CC /\ t e. CC ) -> ( ( 1 / t ) x. ( 1 - t ) ) = ( ( ( 1 / t ) x. 1 ) - ( ( 1 / t ) x. t ) ) ) |
| 332 |
72 331
|
mp3an2 |
|- ( ( ( 1 / t ) e. CC /\ t e. CC ) -> ( ( 1 / t ) x. ( 1 - t ) ) = ( ( ( 1 / t ) x. 1 ) - ( ( 1 / t ) x. t ) ) ) |
| 333 |
302 330 332
|
syl2anc |
|- ( ( t e. CC /\ t =/= 0 ) -> ( ( 1 / t ) x. ( 1 - t ) ) = ( ( ( 1 / t ) x. 1 ) - ( ( 1 / t ) x. t ) ) ) |
| 334 |
302
|
mulridd |
|- ( ( t e. CC /\ t =/= 0 ) -> ( ( 1 / t ) x. 1 ) = ( 1 / t ) ) |
| 335 |
334 314
|
oveq12d |
|- ( ( t e. CC /\ t =/= 0 ) -> ( ( ( 1 / t ) x. 1 ) - ( ( 1 / t ) x. t ) ) = ( ( 1 / t ) - 1 ) ) |
| 336 |
333 335
|
eqtrd |
|- ( ( t e. CC /\ t =/= 0 ) -> ( ( 1 / t ) x. ( 1 - t ) ) = ( ( 1 / t ) - 1 ) ) |
| 337 |
336
|
oveq2d |
|- ( ( t e. CC /\ t =/= 0 ) -> ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) x. ( 1 - t ) ) ) = ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) - 1 ) ) ) |
| 338 |
|
npncan2 |
|- ( ( 1 e. CC /\ ( 1 / t ) e. CC ) -> ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) - 1 ) ) = 0 ) |
| 339 |
72 302 338
|
sylancr |
|- ( ( t e. CC /\ t =/= 0 ) -> ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) - 1 ) ) = 0 ) |
| 340 |
337 339
|
eqtrd |
|- ( ( t e. CC /\ t =/= 0 ) -> ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) x. ( 1 - t ) ) ) = 0 ) |
| 341 |
340
|
adantr |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) x. ( 1 - t ) ) ) = 0 ) |
| 342 |
341
|
oveq1d |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) x. ( 1 - t ) ) ) x. ( Z ` i ) ) = ( 0 x. ( Z ` i ) ) ) |
| 343 |
109
|
ad2antrl |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( 0 x. ( Z ` i ) ) = 0 ) |
| 344 |
342 343
|
eqtrd |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / t ) ) + ( ( 1 / t ) x. ( 1 - t ) ) ) x. ( Z ` i ) ) = 0 ) |
| 345 |
191
|
ad2antrr |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( 1 - t ) e. CC ) |
| 346 |
303 345 328
|
mulassd |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 / t ) x. ( 1 - t ) ) x. ( Z ` i ) ) = ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) |
| 347 |
346
|
oveq2d |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( ( 1 / t ) x. ( 1 - t ) ) x. ( Z ` i ) ) ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) ) |
| 348 |
329 344 347
|
3eqtr3rd |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) = 0 ) |
| 349 |
348 322
|
oveq12d |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) + ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) ) = ( 0 + ( U ` i ) ) ) |
| 350 |
|
addlid |
|- ( ( U ` i ) e. CC -> ( 0 + ( U ` i ) ) = ( U ` i ) ) |
| 351 |
350
|
ad2antll |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( 0 + ( U ` i ) ) = ( U ` i ) ) |
| 352 |
349 351
|
eqtrd |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) + ( ( 1 / t ) x. ( t x. ( U ` i ) ) ) ) = ( U ` i ) ) |
| 353 |
308 324 352
|
3eqtr2rd |
|- ( ( ( t e. CC /\ t =/= 0 ) /\ ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) ) -> ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) |
| 354 |
294 297 299 301 353
|
syl22anc |
|- ( ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) /\ i e. ( 1 ... N ) ) -> ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) |
| 355 |
354
|
ralrimiva |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) |
| 356 |
|
oveq2 |
|- ( s = ( 1 / t ) -> ( 1 - s ) = ( 1 - ( 1 / t ) ) ) |
| 357 |
356
|
oveq1d |
|- ( s = ( 1 / t ) -> ( ( 1 - s ) x. ( Z ` i ) ) = ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) ) |
| 358 |
|
oveq1 |
|- ( s = ( 1 / t ) -> ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) = ( ( 1 / t ) x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) |
| 359 |
357 358
|
oveq12d |
|- ( s = ( 1 / t ) -> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) ) |
| 360 |
359
|
eqeq2d |
|- ( s = ( 1 / t ) -> ( ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) <-> ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) ) ) |
| 361 |
360
|
ralbidv |
|- ( s = ( 1 / t ) -> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) <-> A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) ) ) |
| 362 |
|
fveq2 |
|- ( k = i -> ( Z ` k ) = ( Z ` i ) ) |
| 363 |
362
|
oveq2d |
|- ( k = i -> ( ( 1 - t ) x. ( Z ` k ) ) = ( ( 1 - t ) x. ( Z ` i ) ) ) |
| 364 |
|
fveq2 |
|- ( k = i -> ( U ` k ) = ( U ` i ) ) |
| 365 |
364
|
oveq2d |
|- ( k = i -> ( t x. ( U ` k ) ) = ( t x. ( U ` i ) ) ) |
| 366 |
363 365
|
oveq12d |
|- ( k = i -> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) |
| 367 |
|
eqid |
|- ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) = ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) |
| 368 |
|
ovex |
|- ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) e. _V |
| 369 |
366 367 368
|
fvmpt |
|- ( i e. ( 1 ... N ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) |
| 370 |
369
|
oveq2d |
|- ( i e. ( 1 ... N ) -> ( ( 1 / t ) x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) = ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 371 |
370
|
oveq2d |
|- ( i e. ( 1 ... N ) -> ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) |
| 372 |
371
|
eqeq2d |
|- ( i e. ( 1 ... N ) -> ( ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) <-> ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) ) |
| 373 |
372
|
ralbiia |
|- ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) <-> A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) |
| 374 |
361 373
|
bitrdi |
|- ( s = ( 1 / t ) -> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) <-> A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) ) |
| 375 |
374
|
rspcev |
|- ( ( ( 1 / t ) e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - ( 1 / t ) ) x. ( Z ` i ) ) + ( ( 1 / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) -> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) ) |
| 376 |
292 355 375
|
syl2anc |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) ) |
| 377 |
186
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> U e. ( EE ` N ) ) |
| 378 |
183
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> Z e. ( EE ` N ) ) |
| 379 |
277
|
adantr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. ( EE ` N ) ) |
| 380 |
|
brbtwn |
|- ( ( U e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. ( EE ` N ) ) -> ( U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) ) ) |
| 381 |
377 378 379 380
|
syl3anc |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> ( U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) ) ) ) |
| 382 |
376 381
|
mpbird |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ 1 <_ t ) -> U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. ) |
| 383 |
382
|
ex |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> ( 1 <_ t -> U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. ) ) |
| 384 |
|
simpll |
|- ( ( ( t e. RR /\ 0 <_ t ) /\ t <_ 1 ) -> t e. RR ) |
| 385 |
|
simplr |
|- ( ( ( t e. RR /\ 0 <_ t ) /\ t <_ 1 ) -> 0 <_ t ) |
| 386 |
|
simpr |
|- ( ( ( t e. RR /\ 0 <_ t ) /\ t <_ 1 ) -> t <_ 1 ) |
| 387 |
384 385 386
|
3jca |
|- ( ( ( t e. RR /\ 0 <_ t ) /\ t <_ 1 ) -> ( t e. RR /\ 0 <_ t /\ t <_ 1 ) ) |
| 388 |
175
|
anbi1i |
|- ( ( t e. ( 0 [,) +oo ) /\ t <_ 1 ) <-> ( ( t e. RR /\ 0 <_ t ) /\ t <_ 1 ) ) |
| 389 |
|
elicc01 |
|- ( t e. ( 0 [,] 1 ) <-> ( t e. RR /\ 0 <_ t /\ t <_ 1 ) ) |
| 390 |
387 388 389
|
3imtr4i |
|- ( ( t e. ( 0 [,) +oo ) /\ t <_ 1 ) -> t e. ( 0 [,] 1 ) ) |
| 391 |
390
|
adantll |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ t <_ 1 ) -> t e. ( 0 [,] 1 ) ) |
| 392 |
369
|
rgen |
|- A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) |
| 393 |
|
oveq2 |
|- ( s = t -> ( 1 - s ) = ( 1 - t ) ) |
| 394 |
393
|
oveq1d |
|- ( s = t -> ( ( 1 - s ) x. ( Z ` i ) ) = ( ( 1 - t ) x. ( Z ` i ) ) ) |
| 395 |
|
oveq1 |
|- ( s = t -> ( s x. ( U ` i ) ) = ( t x. ( U ` i ) ) ) |
| 396 |
394 395
|
oveq12d |
|- ( s = t -> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) |
| 397 |
396
|
eqeq2d |
|- ( s = t -> ( ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) <-> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 398 |
397
|
ralbidv |
|- ( s = t -> ( A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 399 |
398
|
rspcev |
|- ( ( t e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) |
| 400 |
391 392 399
|
sylancl |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ t <_ 1 ) -> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) |
| 401 |
277
|
adantr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ t <_ 1 ) -> ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. ( EE ` N ) ) |
| 402 |
183
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ t <_ 1 ) -> Z e. ( EE ` N ) ) |
| 403 |
186
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ t <_ 1 ) -> U e. ( EE ` N ) ) |
| 404 |
|
brbtwn |
|- ( ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) ) |
| 405 |
401 402 403 404
|
syl3anc |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ t <_ 1 ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( U ` i ) ) ) ) ) |
| 406 |
400 405
|
mpbird |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) /\ t <_ 1 ) -> ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. ) |
| 407 |
406
|
ex |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> ( t <_ 1 -> ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. ) ) |
| 408 |
383 407
|
orim12d |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> ( ( 1 <_ t \/ t <_ 1 ) -> ( U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. \/ ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. ) ) ) |
| 409 |
280 408
|
mpd |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> ( U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. \/ ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. ) ) |
| 410 |
|
opeq2 |
|- ( p = ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) -> <. Z , p >. = <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. ) |
| 411 |
410
|
breq2d |
|- ( p = ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) -> ( U Btwn <. Z , p >. <-> U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. ) ) |
| 412 |
|
breq1 |
|- ( p = ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) -> ( p Btwn <. Z , U >. <-> ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. ) ) |
| 413 |
411 412
|
orbi12d |
|- ( p = ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) -> ( ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) <-> ( U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. \/ ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. ) ) ) |
| 414 |
413 1
|
elrab2 |
|- ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. D <-> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. ( EE ` N ) /\ ( U Btwn <. Z , ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) >. \/ ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) Btwn <. Z , U >. ) ) ) |
| 415 |
277 409 414
|
sylanbrc |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. D ) |
| 416 |
|
fveq1 |
|- ( x = ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) -> ( x ` i ) = ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) ) |
| 417 |
416
|
eqeq1d |
|- ( x = ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) -> ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 418 |
417
|
ralbidv |
|- ( x = ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) -> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 419 |
418
|
rspcev |
|- ( ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) e. D /\ A. i e. ( 1 ... N ) ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - t ) x. ( Z ` k ) ) + ( t x. ( U ` k ) ) ) ) ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> E. x e. D A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) |
| 420 |
415 392 419
|
sylancl |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> E. x e. D A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) |
| 421 |
7
|
simplbi |
|- ( x e. D -> x e. ( EE ` N ) ) |
| 422 |
1
|
ssrab3 |
|- D C_ ( EE ` N ) |
| 423 |
422
|
sseli |
|- ( y e. D -> y e. ( EE ` N ) ) |
| 424 |
421 423
|
anim12i |
|- ( ( x e. D /\ y e. D ) -> ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) |
| 425 |
|
r19.26 |
|- ( A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) <-> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 426 |
|
eqtr3 |
|- ( ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> ( x ` i ) = ( y ` i ) ) |
| 427 |
426
|
ralimi |
|- ( A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( x ` i ) = ( y ` i ) ) |
| 428 |
425 427
|
sylbir |
|- ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( x ` i ) = ( y ` i ) ) |
| 429 |
|
eqeefv |
|- ( ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) -> ( x = y <-> A. i e. ( 1 ... N ) ( x ` i ) = ( y ` i ) ) ) |
| 430 |
429
|
adantl |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( x = y <-> A. i e. ( 1 ... N ) ( x ` i ) = ( y ` i ) ) ) |
| 431 |
428 430
|
imbitrrid |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( x e. ( EE ` N ) /\ y e. ( EE ` N ) ) ) -> ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> x = y ) ) |
| 432 |
424 431
|
sylan2 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( x e. D /\ y e. D ) ) -> ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> x = y ) ) |
| 433 |
432
|
ralrimivva |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> A. x e. D A. y e. D ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> x = y ) ) |
| 434 |
433
|
adantr |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> A. x e. D A. y e. D ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> x = y ) ) |
| 435 |
|
df-reu |
|- ( E! x e. D A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> E! x ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 436 |
|
fveq1 |
|- ( x = y -> ( x ` i ) = ( y ` i ) ) |
| 437 |
436
|
eqeq1d |
|- ( x = y -> ( ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 438 |
437
|
ralbidv |
|- ( x = y -> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 439 |
438
|
reu4 |
|- ( E! x e. D A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) <-> ( E. x e. D A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. x e. D A. y e. D ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> x = y ) ) ) |
| 440 |
435 439
|
bitr3i |
|- ( E! x ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) <-> ( E. x e. D A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. x e. D A. y e. D ( ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( y ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) -> x = y ) ) ) |
| 441 |
420 434 440
|
sylanbrc |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ t e. ( 0 [,) +oo ) ) -> E! x ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 442 |
441
|
ralrimiva |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> A. t e. ( 0 [,) +oo ) E! x ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) |
| 443 |
|
an12 |
|- ( ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) <-> ( t e. ( 0 [,) +oo ) /\ ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) ) |
| 444 |
443
|
opabbii |
|- { <. x , t >. | ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } = { <. x , t >. | ( t e. ( 0 [,) +oo ) /\ ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } |
| 445 |
2 444
|
eqtri |
|- F = { <. x , t >. | ( t e. ( 0 [,) +oo ) /\ ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } |
| 446 |
445
|
cnveqi |
|- `' F = `' { <. x , t >. | ( t e. ( 0 [,) +oo ) /\ ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } |
| 447 |
|
cnvopab |
|- `' { <. x , t >. | ( t e. ( 0 [,) +oo ) /\ ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } = { <. t , x >. | ( t e. ( 0 [,) +oo ) /\ ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } |
| 448 |
446 447
|
eqtri |
|- `' F = { <. t , x >. | ( t e. ( 0 [,) +oo ) /\ ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } |
| 449 |
448
|
fnopabg |
|- ( A. t e. ( 0 [,) +oo ) E! x ( x e. D /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) <-> `' F Fn ( 0 [,) +oo ) ) |
| 450 |
442 449
|
sylib |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> `' F Fn ( 0 [,) +oo ) ) |
| 451 |
|
dff1o4 |
|- ( F : D -1-1-onto-> ( 0 [,) +oo ) <-> ( F Fn D /\ `' F Fn ( 0 [,) +oo ) ) ) |
| 452 |
256 450 451
|
sylanbrc |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> F : D -1-1-onto-> ( 0 [,) +oo ) ) |