| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axcontlem4.1 |
|- D = { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } |
| 2 |
|
simplr1 |
|- ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( ( Z e. ( EE ` N ) /\ U e. A /\ B =/= (/) ) /\ Z =/= U ) ) -> A C_ ( EE ` N ) ) |
| 3 |
|
n0 |
|- ( B =/= (/) <-> E. b b e. B ) |
| 4 |
|
idd |
|- ( b e. B -> ( A C_ ( EE ` N ) -> A C_ ( EE ` N ) ) ) |
| 5 |
|
ssel |
|- ( B C_ ( EE ` N ) -> ( b e. B -> b e. ( EE ` N ) ) ) |
| 6 |
5
|
com12 |
|- ( b e. B -> ( B C_ ( EE ` N ) -> b e. ( EE ` N ) ) ) |
| 7 |
|
opeq2 |
|- ( y = b -> <. Z , y >. = <. Z , b >. ) |
| 8 |
7
|
breq2d |
|- ( y = b -> ( x Btwn <. Z , y >. <-> x Btwn <. Z , b >. ) ) |
| 9 |
8
|
rspcv |
|- ( b e. B -> ( A. y e. B x Btwn <. Z , y >. -> x Btwn <. Z , b >. ) ) |
| 10 |
9
|
ralimdv |
|- ( b e. B -> ( A. x e. A A. y e. B x Btwn <. Z , y >. -> A. x e. A x Btwn <. Z , b >. ) ) |
| 11 |
4 6 10
|
3anim123d |
|- ( b e. B -> ( ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) -> ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) ) |
| 12 |
11
|
anim2d |
|- ( b e. B -> ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) -> ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) ) ) |
| 13 |
|
simplr1 |
|- ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> A C_ ( EE ` N ) ) |
| 14 |
13
|
adantr |
|- ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> A C_ ( EE ` N ) ) |
| 15 |
|
simplr2 |
|- ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> U e. A ) |
| 16 |
14 15
|
sseldd |
|- ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> U e. ( EE ` N ) ) |
| 17 |
|
simpr3 |
|- ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) -> A. x e. A x Btwn <. Z , b >. ) |
| 18 |
|
simp2 |
|- ( ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) -> U e. A ) |
| 19 |
|
breq1 |
|- ( x = U -> ( x Btwn <. Z , b >. <-> U Btwn <. Z , b >. ) ) |
| 20 |
19
|
rspccva |
|- ( ( A. x e. A x Btwn <. Z , b >. /\ U e. A ) -> U Btwn <. Z , b >. ) |
| 21 |
17 18 20
|
syl2an |
|- ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> U Btwn <. Z , b >. ) |
| 22 |
21
|
adantr |
|- ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> U Btwn <. Z , b >. ) |
| 23 |
16 22
|
jca |
|- ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> ( U e. ( EE ` N ) /\ U Btwn <. Z , b >. ) ) |
| 24 |
13
|
sselda |
|- ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> p e. ( EE ` N ) ) |
| 25 |
17
|
adantr |
|- ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> A. x e. A x Btwn <. Z , b >. ) |
| 26 |
|
breq1 |
|- ( x = p -> ( x Btwn <. Z , b >. <-> p Btwn <. Z , b >. ) ) |
| 27 |
26
|
rspccva |
|- ( ( A. x e. A x Btwn <. Z , b >. /\ p e. A ) -> p Btwn <. Z , b >. ) |
| 28 |
25 27
|
sylan |
|- ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> p Btwn <. Z , b >. ) |
| 29 |
23 24 28
|
jca32 |
|- ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> ( ( U e. ( EE ` N ) /\ U Btwn <. Z , b >. ) /\ ( p e. ( EE ` N ) /\ p Btwn <. Z , b >. ) ) ) |
| 30 |
|
an4 |
|- ( ( ( U e. ( EE ` N ) /\ U Btwn <. Z , b >. ) /\ ( p e. ( EE ` N ) /\ p Btwn <. Z , b >. ) ) <-> ( ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) /\ ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) ) ) |
| 31 |
29 30
|
sylib |
|- ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> ( ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) /\ ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) ) ) |
| 32 |
|
simp2 |
|- ( ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) -> b e. ( EE ` N ) ) |
| 33 |
|
simpl2r |
|- ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> Z =/= U ) |
| 34 |
33
|
adantr |
|- ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) -> Z =/= U ) |
| 35 |
|
simpl |
|- ( ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) |
| 36 |
35
|
ralimi |
|- ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) |
| 37 |
|
eqcom |
|- ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) <-> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( U ` i ) ) |
| 38 |
|
oveq2 |
|- ( t = 0 -> ( 1 - t ) = ( 1 - 0 ) ) |
| 39 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 40 |
38 39
|
eqtrdi |
|- ( t = 0 -> ( 1 - t ) = 1 ) |
| 41 |
40
|
oveq1d |
|- ( t = 0 -> ( ( 1 - t ) x. ( Z ` i ) ) = ( 1 x. ( Z ` i ) ) ) |
| 42 |
|
oveq1 |
|- ( t = 0 -> ( t x. ( b ` i ) ) = ( 0 x. ( b ` i ) ) ) |
| 43 |
41 42
|
oveq12d |
|- ( t = 0 -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) ) |
| 44 |
43
|
eqeq1d |
|- ( t = 0 -> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( U ` i ) <-> ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( U ` i ) ) ) |
| 45 |
37 44
|
bitrid |
|- ( t = 0 -> ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) <-> ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( U ` i ) ) ) |
| 46 |
45
|
ralbidv |
|- ( t = 0 -> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( U ` i ) ) ) |
| 47 |
46
|
biimpac |
|- ( ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ t = 0 ) -> A. i e. ( 1 ... N ) ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( U ` i ) ) |
| 48 |
|
simpl2l |
|- ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> Z e. ( EE ` N ) ) |
| 49 |
|
simpl3l |
|- ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> U e. ( EE ` N ) ) |
| 50 |
|
eqeefv |
|- ( ( Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) |
| 51 |
48 49 50
|
syl2anc |
|- ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) |
| 52 |
|
fveecn |
|- ( ( Z e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) |
| 53 |
48 52
|
sylan |
|- ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) |
| 54 |
|
simp1r |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> b e. ( EE ` N ) ) |
| 55 |
54
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> b e. ( EE ` N ) ) |
| 56 |
|
fveecn |
|- ( ( b e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( b ` i ) e. CC ) |
| 57 |
55 56
|
sylancom |
|- ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( b ` i ) e. CC ) |
| 58 |
|
mullid |
|- ( ( Z ` i ) e. CC -> ( 1 x. ( Z ` i ) ) = ( Z ` i ) ) |
| 59 |
|
mul02 |
|- ( ( b ` i ) e. CC -> ( 0 x. ( b ` i ) ) = 0 ) |
| 60 |
58 59
|
oveqan12d |
|- ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) -> ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( ( Z ` i ) + 0 ) ) |
| 61 |
|
addrid |
|- ( ( Z ` i ) e. CC -> ( ( Z ` i ) + 0 ) = ( Z ` i ) ) |
| 62 |
61
|
adantr |
|- ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) -> ( ( Z ` i ) + 0 ) = ( Z ` i ) ) |
| 63 |
60 62
|
eqtrd |
|- ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) -> ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( Z ` i ) ) |
| 64 |
53 57 63
|
syl2anc |
|- ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( Z ` i ) ) |
| 65 |
64
|
eqeq1d |
|- ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( U ` i ) <-> ( Z ` i ) = ( U ` i ) ) ) |
| 66 |
65
|
ralbidva |
|- ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( U ` i ) <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) |
| 67 |
51 66
|
bitr4d |
|- ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( ( 1 x. ( Z ` i ) ) + ( 0 x. ( b ` i ) ) ) = ( U ` i ) ) ) |
| 68 |
47 67
|
imbitrrid |
|- ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ t = 0 ) -> Z = U ) ) |
| 69 |
68
|
expdimp |
|- ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) -> ( t = 0 -> Z = U ) ) |
| 70 |
36 69
|
sylan2 |
|- ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) -> ( t = 0 -> Z = U ) ) |
| 71 |
70
|
necon3d |
|- ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) -> ( Z =/= U -> t =/= 0 ) ) |
| 72 |
34 71
|
mpd |
|- ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) -> t =/= 0 ) |
| 73 |
|
simp1l |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> N e. NN ) |
| 74 |
|
simp2l |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> Z e. ( EE ` N ) ) |
| 75 |
73 74 54
|
3jca |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) ) |
| 76 |
|
simp2l |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> t e. ( 0 [,] 1 ) ) |
| 77 |
|
elicc01 |
|- ( t e. ( 0 [,] 1 ) <-> ( t e. RR /\ 0 <_ t /\ t <_ 1 ) ) |
| 78 |
77
|
simp1bi |
|- ( t e. ( 0 [,] 1 ) -> t e. RR ) |
| 79 |
76 78
|
syl |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> t e. RR ) |
| 80 |
|
simp2r |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> s e. ( 0 [,] 1 ) ) |
| 81 |
|
elicc01 |
|- ( s e. ( 0 [,] 1 ) <-> ( s e. RR /\ 0 <_ s /\ s <_ 1 ) ) |
| 82 |
81
|
simp1bi |
|- ( s e. ( 0 [,] 1 ) -> s e. RR ) |
| 83 |
80 82
|
syl |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> s e. RR ) |
| 84 |
79 83
|
letrid |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> ( t <_ s \/ s <_ t ) ) |
| 85 |
|
simpr |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> t <_ s ) |
| 86 |
79
|
adantr |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> t e. RR ) |
| 87 |
77
|
simp2bi |
|- ( t e. ( 0 [,] 1 ) -> 0 <_ t ) |
| 88 |
76 87
|
syl |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> 0 <_ t ) |
| 89 |
88
|
adantr |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> 0 <_ t ) |
| 90 |
83
|
adantr |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> s e. RR ) |
| 91 |
|
0red |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> 0 e. RR ) |
| 92 |
|
simp3 |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> t =/= 0 ) |
| 93 |
79 88 92
|
ne0gt0d |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> 0 < t ) |
| 94 |
93
|
adantr |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> 0 < t ) |
| 95 |
91 86 90 94 85
|
ltletrd |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> 0 < s ) |
| 96 |
|
divelunit |
|- ( ( ( t e. RR /\ 0 <_ t ) /\ ( s e. RR /\ 0 < s ) ) -> ( ( t / s ) e. ( 0 [,] 1 ) <-> t <_ s ) ) |
| 97 |
86 89 90 95 96
|
syl22anc |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> ( ( t / s ) e. ( 0 [,] 1 ) <-> t <_ s ) ) |
| 98 |
85 97
|
mpbird |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> ( t / s ) e. ( 0 [,] 1 ) ) |
| 99 |
|
simp12 |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> Z e. ( EE ` N ) ) |
| 100 |
99
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> Z e. ( EE ` N ) ) |
| 101 |
100 52
|
sylancom |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) |
| 102 |
|
simp13 |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> b e. ( EE ` N ) ) |
| 103 |
102
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> b e. ( EE ` N ) ) |
| 104 |
103 56
|
sylancom |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> ( b ` i ) e. CC ) |
| 105 |
78
|
recnd |
|- ( t e. ( 0 [,] 1 ) -> t e. CC ) |
| 106 |
76 105
|
syl |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> t e. CC ) |
| 107 |
106
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> t e. CC ) |
| 108 |
82
|
recnd |
|- ( s e. ( 0 [,] 1 ) -> s e. CC ) |
| 109 |
80 108
|
syl |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> s e. CC ) |
| 110 |
109
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> s e. CC ) |
| 111 |
|
0red |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> 0 e. RR ) |
| 112 |
79
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> t e. RR ) |
| 113 |
83
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> s e. RR ) |
| 114 |
88
|
ad2antrr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> 0 <_ t ) |
| 115 |
|
simpll3 |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> t =/= 0 ) |
| 116 |
112 114 115
|
ne0gt0d |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> 0 < t ) |
| 117 |
|
simplr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> t <_ s ) |
| 118 |
111 112 113 116 117
|
ltletrd |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> 0 < s ) |
| 119 |
118
|
gt0ne0d |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> s =/= 0 ) |
| 120 |
|
divcl |
|- ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( t / s ) e. CC ) |
| 121 |
120
|
adantl |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( t / s ) e. CC ) |
| 122 |
|
ax-1cn |
|- 1 e. CC |
| 123 |
|
simpr2 |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> s e. CC ) |
| 124 |
|
subcl |
|- ( ( 1 e. CC /\ s e. CC ) -> ( 1 - s ) e. CC ) |
| 125 |
122 123 124
|
sylancr |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( 1 - s ) e. CC ) |
| 126 |
|
simpll |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( Z ` i ) e. CC ) |
| 127 |
125 126
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( 1 - s ) x. ( Z ` i ) ) e. CC ) |
| 128 |
|
simplr |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( b ` i ) e. CC ) |
| 129 |
123 128
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( s x. ( b ` i ) ) e. CC ) |
| 130 |
121 127 129
|
adddid |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) = ( ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) + ( ( t / s ) x. ( s x. ( b ` i ) ) ) ) ) |
| 131 |
130
|
oveq2d |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) + ( ( t / s ) x. ( s x. ( b ` i ) ) ) ) ) ) |
| 132 |
|
subcl |
|- ( ( 1 e. CC /\ ( t / s ) e. CC ) -> ( 1 - ( t / s ) ) e. CC ) |
| 133 |
122 121 132
|
sylancr |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( 1 - ( t / s ) ) e. CC ) |
| 134 |
133 126
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) e. CC ) |
| 135 |
121 127
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) e. CC ) |
| 136 |
121 129
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( t / s ) x. ( s x. ( b ` i ) ) ) e. CC ) |
| 137 |
134 135 136
|
addassd |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) + ( ( t / s ) x. ( s x. ( b ` i ) ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) + ( ( t / s ) x. ( s x. ( b ` i ) ) ) ) ) ) |
| 138 |
121 125
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( t / s ) x. ( 1 - s ) ) e. CC ) |
| 139 |
133 138 126
|
adddird |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( 1 - ( t / s ) ) + ( ( t / s ) x. ( 1 - s ) ) ) x. ( Z ` i ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( ( t / s ) x. ( 1 - s ) ) x. ( Z ` i ) ) ) ) |
| 140 |
|
simp2 |
|- ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> s e. CC ) |
| 141 |
|
subdi |
|- ( ( ( t / s ) e. CC /\ 1 e. CC /\ s e. CC ) -> ( ( t / s ) x. ( 1 - s ) ) = ( ( ( t / s ) x. 1 ) - ( ( t / s ) x. s ) ) ) |
| 142 |
122 141
|
mp3an2 |
|- ( ( ( t / s ) e. CC /\ s e. CC ) -> ( ( t / s ) x. ( 1 - s ) ) = ( ( ( t / s ) x. 1 ) - ( ( t / s ) x. s ) ) ) |
| 143 |
120 140 142
|
syl2anc |
|- ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( ( t / s ) x. ( 1 - s ) ) = ( ( ( t / s ) x. 1 ) - ( ( t / s ) x. s ) ) ) |
| 144 |
120
|
mulridd |
|- ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( ( t / s ) x. 1 ) = ( t / s ) ) |
| 145 |
|
divcan1 |
|- ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( ( t / s ) x. s ) = t ) |
| 146 |
144 145
|
oveq12d |
|- ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( ( ( t / s ) x. 1 ) - ( ( t / s ) x. s ) ) = ( ( t / s ) - t ) ) |
| 147 |
143 146
|
eqtrd |
|- ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( ( t / s ) x. ( 1 - s ) ) = ( ( t / s ) - t ) ) |
| 148 |
147
|
oveq2d |
|- ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( ( 1 - ( t / s ) ) + ( ( t / s ) x. ( 1 - s ) ) ) = ( ( 1 - ( t / s ) ) + ( ( t / s ) - t ) ) ) |
| 149 |
|
simp1 |
|- ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> t e. CC ) |
| 150 |
|
npncan |
|- ( ( 1 e. CC /\ ( t / s ) e. CC /\ t e. CC ) -> ( ( 1 - ( t / s ) ) + ( ( t / s ) - t ) ) = ( 1 - t ) ) |
| 151 |
122 120 149 150
|
mp3an2i |
|- ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( ( 1 - ( t / s ) ) + ( ( t / s ) - t ) ) = ( 1 - t ) ) |
| 152 |
148 151
|
eqtrd |
|- ( ( t e. CC /\ s e. CC /\ s =/= 0 ) -> ( ( 1 - ( t / s ) ) + ( ( t / s ) x. ( 1 - s ) ) ) = ( 1 - t ) ) |
| 153 |
152
|
adantl |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( 1 - ( t / s ) ) + ( ( t / s ) x. ( 1 - s ) ) ) = ( 1 - t ) ) |
| 154 |
153
|
oveq1d |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( 1 - ( t / s ) ) + ( ( t / s ) x. ( 1 - s ) ) ) x. ( Z ` i ) ) = ( ( 1 - t ) x. ( Z ` i ) ) ) |
| 155 |
121 125 126
|
mulassd |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( t / s ) x. ( 1 - s ) ) x. ( Z ` i ) ) = ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) |
| 156 |
155
|
oveq2d |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( ( t / s ) x. ( 1 - s ) ) x. ( Z ` i ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) ) |
| 157 |
139 154 156
|
3eqtr3rd |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) = ( ( 1 - t ) x. ( Z ` i ) ) ) |
| 158 |
121 123 128
|
mulassd |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( t / s ) x. s ) x. ( b ` i ) ) = ( ( t / s ) x. ( s x. ( b ` i ) ) ) ) |
| 159 |
145
|
adantl |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( t / s ) x. s ) = t ) |
| 160 |
159
|
oveq1d |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( t / s ) x. s ) x. ( b ` i ) ) = ( t x. ( b ` i ) ) ) |
| 161 |
158 160
|
eqtr3d |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( t / s ) x. ( s x. ( b ` i ) ) ) = ( t x. ( b ` i ) ) ) |
| 162 |
157 161
|
oveq12d |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( 1 - s ) x. ( Z ` i ) ) ) ) + ( ( t / s ) x. ( s x. ( b ` i ) ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) |
| 163 |
131 137 162
|
3eqtr2rd |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( t e. CC /\ s e. CC /\ s =/= 0 ) ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) |
| 164 |
101 104 107 110 119 163
|
syl23anc |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) |
| 165 |
164
|
ralrimiva |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) |
| 166 |
|
oveq2 |
|- ( r = ( t / s ) -> ( 1 - r ) = ( 1 - ( t / s ) ) ) |
| 167 |
166
|
oveq1d |
|- ( r = ( t / s ) -> ( ( 1 - r ) x. ( Z ` i ) ) = ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) ) |
| 168 |
|
oveq1 |
|- ( r = ( t / s ) -> ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) = ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) |
| 169 |
167 168
|
oveq12d |
|- ( r = ( t / s ) -> ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) |
| 170 |
169
|
eqeq2d |
|- ( r = ( t / s ) -> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) <-> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) ) |
| 171 |
170
|
ralbidv |
|- ( r = ( t / s ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) ) |
| 172 |
171
|
rspcev |
|- ( ( ( t / s ) e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - ( t / s ) ) x. ( Z ` i ) ) + ( ( t / s ) x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) -> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) |
| 173 |
98 165 172
|
syl2anc |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ t <_ s ) -> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) |
| 174 |
173
|
ex |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> ( t <_ s -> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) ) |
| 175 |
81
|
simp2bi |
|- ( s e. ( 0 [,] 1 ) -> 0 <_ s ) |
| 176 |
80 175
|
syl |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> 0 <_ s ) |
| 177 |
|
divelunit |
|- ( ( ( s e. RR /\ 0 <_ s ) /\ ( t e. RR /\ 0 < t ) ) -> ( ( s / t ) e. ( 0 [,] 1 ) <-> s <_ t ) ) |
| 178 |
83 176 79 93 177
|
syl22anc |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> ( ( s / t ) e. ( 0 [,] 1 ) <-> s <_ t ) ) |
| 179 |
178
|
biimpar |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t ) -> ( s / t ) e. ( 0 [,] 1 ) ) |
| 180 |
|
simp112 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> Z e. ( EE ` N ) ) |
| 181 |
|
simp3 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> i e. ( 1 ... N ) ) |
| 182 |
180 181 52
|
syl2anc |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) |
| 183 |
|
simp113 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> b e. ( EE ` N ) ) |
| 184 |
183 181 56
|
syl2anc |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> ( b ` i ) e. CC ) |
| 185 |
|
simp12r |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> s e. ( 0 [,] 1 ) ) |
| 186 |
185 108
|
syl |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> s e. CC ) |
| 187 |
|
simp12l |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> t e. ( 0 [,] 1 ) ) |
| 188 |
187 105
|
syl |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> t e. CC ) |
| 189 |
|
simp13 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> t =/= 0 ) |
| 190 |
|
divcl |
|- ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( s / t ) e. CC ) |
| 191 |
190
|
adantl |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( s / t ) e. CC ) |
| 192 |
|
simpr2 |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> t e. CC ) |
| 193 |
|
subcl |
|- ( ( 1 e. CC /\ t e. CC ) -> ( 1 - t ) e. CC ) |
| 194 |
122 192 193
|
sylancr |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( 1 - t ) e. CC ) |
| 195 |
|
simpll |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( Z ` i ) e. CC ) |
| 196 |
194 195
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( 1 - t ) x. ( Z ` i ) ) e. CC ) |
| 197 |
|
simplr |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( b ` i ) e. CC ) |
| 198 |
192 197
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( t x. ( b ` i ) ) e. CC ) |
| 199 |
191 196 198
|
adddid |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) = ( ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) + ( ( s / t ) x. ( t x. ( b ` i ) ) ) ) ) |
| 200 |
199
|
oveq2d |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) + ( ( s / t ) x. ( t x. ( b ` i ) ) ) ) ) ) |
| 201 |
|
subcl |
|- ( ( 1 e. CC /\ ( s / t ) e. CC ) -> ( 1 - ( s / t ) ) e. CC ) |
| 202 |
122 191 201
|
sylancr |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( 1 - ( s / t ) ) e. CC ) |
| 203 |
202 195
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) e. CC ) |
| 204 |
191 196
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) e. CC ) |
| 205 |
191 198
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( s / t ) x. ( t x. ( b ` i ) ) ) e. CC ) |
| 206 |
203 204 205
|
addassd |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) + ( ( s / t ) x. ( t x. ( b ` i ) ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) + ( ( s / t ) x. ( t x. ( b ` i ) ) ) ) ) ) |
| 207 |
|
simp2 |
|- ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> t e. CC ) |
| 208 |
|
subdi |
|- ( ( ( s / t ) e. CC /\ 1 e. CC /\ t e. CC ) -> ( ( s / t ) x. ( 1 - t ) ) = ( ( ( s / t ) x. 1 ) - ( ( s / t ) x. t ) ) ) |
| 209 |
122 208
|
mp3an2 |
|- ( ( ( s / t ) e. CC /\ t e. CC ) -> ( ( s / t ) x. ( 1 - t ) ) = ( ( ( s / t ) x. 1 ) - ( ( s / t ) x. t ) ) ) |
| 210 |
190 207 209
|
syl2anc |
|- ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( s / t ) x. ( 1 - t ) ) = ( ( ( s / t ) x. 1 ) - ( ( s / t ) x. t ) ) ) |
| 211 |
190
|
mulridd |
|- ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( s / t ) x. 1 ) = ( s / t ) ) |
| 212 |
|
divcan1 |
|- ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( s / t ) x. t ) = s ) |
| 213 |
211 212
|
oveq12d |
|- ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( ( s / t ) x. 1 ) - ( ( s / t ) x. t ) ) = ( ( s / t ) - s ) ) |
| 214 |
210 213
|
eqtrd |
|- ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( s / t ) x. ( 1 - t ) ) = ( ( s / t ) - s ) ) |
| 215 |
214
|
oveq2d |
|- ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( 1 - ( s / t ) ) + ( ( s / t ) x. ( 1 - t ) ) ) = ( ( 1 - ( s / t ) ) + ( ( s / t ) - s ) ) ) |
| 216 |
|
simp1 |
|- ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> s e. CC ) |
| 217 |
|
npncan |
|- ( ( 1 e. CC /\ ( s / t ) e. CC /\ s e. CC ) -> ( ( 1 - ( s / t ) ) + ( ( s / t ) - s ) ) = ( 1 - s ) ) |
| 218 |
122 190 216 217
|
mp3an2i |
|- ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( 1 - ( s / t ) ) + ( ( s / t ) - s ) ) = ( 1 - s ) ) |
| 219 |
215 218
|
eqtr2d |
|- ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( 1 - s ) = ( ( 1 - ( s / t ) ) + ( ( s / t ) x. ( 1 - t ) ) ) ) |
| 220 |
219
|
oveq1d |
|- ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( 1 - s ) x. ( Z ` i ) ) = ( ( ( 1 - ( s / t ) ) + ( ( s / t ) x. ( 1 - t ) ) ) x. ( Z ` i ) ) ) |
| 221 |
220
|
adantl |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( 1 - s ) x. ( Z ` i ) ) = ( ( ( 1 - ( s / t ) ) + ( ( s / t ) x. ( 1 - t ) ) ) x. ( Z ` i ) ) ) |
| 222 |
191 194
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( s / t ) x. ( 1 - t ) ) e. CC ) |
| 223 |
202 222 195
|
adddird |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( 1 - ( s / t ) ) + ( ( s / t ) x. ( 1 - t ) ) ) x. ( Z ` i ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( ( s / t ) x. ( 1 - t ) ) x. ( Z ` i ) ) ) ) |
| 224 |
191 194 195
|
mulassd |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( s / t ) x. ( 1 - t ) ) x. ( Z ` i ) ) = ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) |
| 225 |
224
|
oveq2d |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( ( s / t ) x. ( 1 - t ) ) x. ( Z ` i ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) ) |
| 226 |
221 223 225
|
3eqtrrd |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) = ( ( 1 - s ) x. ( Z ` i ) ) ) |
| 227 |
191 192 197
|
mulassd |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( s / t ) x. t ) x. ( b ` i ) ) = ( ( s / t ) x. ( t x. ( b ` i ) ) ) ) |
| 228 |
212
|
oveq1d |
|- ( ( s e. CC /\ t e. CC /\ t =/= 0 ) -> ( ( ( s / t ) x. t ) x. ( b ` i ) ) = ( s x. ( b ` i ) ) ) |
| 229 |
228
|
adantl |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( s / t ) x. t ) x. ( b ` i ) ) = ( s x. ( b ` i ) ) ) |
| 230 |
227 229
|
eqtr3d |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( s / t ) x. ( t x. ( b ` i ) ) ) = ( s x. ( b ` i ) ) ) |
| 231 |
226 230
|
oveq12d |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( 1 - t ) x. ( Z ` i ) ) ) ) + ( ( s / t ) x. ( t x. ( b ` i ) ) ) ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) |
| 232 |
200 206 231
|
3eqtr2rd |
|- ( ( ( ( Z ` i ) e. CC /\ ( b ` i ) e. CC ) /\ ( s e. CC /\ t e. CC /\ t =/= 0 ) ) -> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) |
| 233 |
182 184 186 188 189 232
|
syl23anc |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) |
| 234 |
233
|
3expa |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) |
| 235 |
234
|
ralrimiva |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t ) -> A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) |
| 236 |
|
oveq2 |
|- ( r = ( s / t ) -> ( 1 - r ) = ( 1 - ( s / t ) ) ) |
| 237 |
236
|
oveq1d |
|- ( r = ( s / t ) -> ( ( 1 - r ) x. ( Z ` i ) ) = ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) ) |
| 238 |
|
oveq1 |
|- ( r = ( s / t ) -> ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) = ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) |
| 239 |
237 238
|
oveq12d |
|- ( r = ( s / t ) -> ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) |
| 240 |
239
|
eqeq2d |
|- ( r = ( s / t ) -> ( ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) <-> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) |
| 241 |
240
|
ralbidv |
|- ( r = ( s / t ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) |
| 242 |
241
|
rspcev |
|- ( ( ( s / t ) e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - ( s / t ) ) x. ( Z ` i ) ) + ( ( s / t ) x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) -> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) |
| 243 |
179 235 242
|
syl2anc |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) /\ s <_ t ) -> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) |
| 244 |
243
|
ex |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> ( s <_ t -> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) |
| 245 |
174 244
|
orim12d |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> ( ( t <_ s \/ s <_ t ) -> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) \/ E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) ) |
| 246 |
|
r19.43 |
|- ( E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) \/ A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) <-> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) \/ E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) |
| 247 |
245 246
|
imbitrrdi |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> ( ( t <_ s \/ s <_ t ) -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) \/ A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) ) |
| 248 |
84 247
|
mpd |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) \/ A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) |
| 249 |
|
id |
|- ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) -> ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) |
| 250 |
|
oveq2 |
|- ( ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) -> ( r x. ( p ` i ) ) = ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) |
| 251 |
250
|
oveq2d |
|- ( ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) -> ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) |
| 252 |
249 251
|
eqeqan12d |
|- ( ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) <-> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) ) |
| 253 |
252
|
ralimi |
|- ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) <-> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) ) |
| 254 |
|
ralbi |
|- ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) <-> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) -> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) ) |
| 255 |
253 254
|
syl |
|- ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) ) |
| 256 |
|
id |
|- ( ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) -> ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) |
| 257 |
|
oveq2 |
|- ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) -> ( r x. ( U ` i ) ) = ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) |
| 258 |
257
|
oveq2d |
|- ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) -> ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) |
| 259 |
256 258
|
eqeqan12rd |
|- ( ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) <-> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) |
| 260 |
259
|
ralimi |
|- ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) <-> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) |
| 261 |
|
ralbi |
|- ( A. i e. ( 1 ... N ) ( ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) <-> ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) -> ( A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) |
| 262 |
260 261
|
syl |
|- ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) |
| 263 |
255 262
|
orbi12d |
|- ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) <-> ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) \/ A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) ) |
| 264 |
263
|
rexbidv |
|- ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) <-> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) \/ A. i e. ( 1 ... N ) ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) ) ) ) |
| 265 |
248 264
|
syl5ibrcom |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) /\ t =/= 0 ) -> ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) |
| 266 |
265
|
3expia |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( t =/= 0 -> ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) ) |
| 267 |
266
|
com23 |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( t =/= 0 -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) ) |
| 268 |
75 267
|
sylan |
|- ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> ( t =/= 0 -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) ) |
| 269 |
268
|
imp |
|- ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) -> ( t =/= 0 -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) |
| 270 |
72 269
|
mpd |
|- ( ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) |
| 271 |
270
|
ex |
|- ( ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) |
| 272 |
271
|
rexlimdvva |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) -> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) |
| 273 |
|
simp3l |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> U e. ( EE ` N ) ) |
| 274 |
|
brbtwn |
|- ( ( U e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) -> ( U Btwn <. Z , b >. <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) |
| 275 |
273 74 54 274
|
syl3anc |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( U Btwn <. Z , b >. <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) ) ) |
| 276 |
|
simp3r |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> p e. ( EE ` N ) ) |
| 277 |
|
brbtwn |
|- ( ( p e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ b e. ( EE ` N ) ) -> ( p Btwn <. Z , b >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) |
| 278 |
276 74 54 277
|
syl3anc |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( p Btwn <. Z , b >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) |
| 279 |
275 278
|
anbi12d |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) <-> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) |
| 280 |
|
r19.26 |
|- ( A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) <-> ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) |
| 281 |
280
|
2rexbii |
|- ( E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) <-> E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) |
| 282 |
|
reeanv |
|- ( E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) <-> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) |
| 283 |
281 282
|
bitri |
|- ( E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) <-> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) |
| 284 |
279 283
|
bitr4di |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) <-> E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( U ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( b ` i ) ) ) /\ ( p ` i ) = ( ( ( 1 - s ) x. ( Z ` i ) ) + ( s x. ( b ` i ) ) ) ) ) ) |
| 285 |
|
brbtwn |
|- ( ( U e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ p e. ( EE ` N ) ) -> ( U Btwn <. Z , p >. <-> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) ) ) |
| 286 |
273 74 276 285
|
syl3anc |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( U Btwn <. Z , p >. <-> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) ) ) |
| 287 |
|
brbtwn |
|- ( ( p e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) -> ( p Btwn <. Z , U >. <-> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) |
| 288 |
276 74 273 287
|
syl3anc |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( p Btwn <. Z , U >. <-> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) |
| 289 |
286 288
|
orbi12d |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) <-> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) |
| 290 |
|
r19.43 |
|- ( E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) <-> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) |
| 291 |
289 290
|
bitr4di |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) <-> E. r e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( U ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( p ` i ) ) ) \/ A. i e. ( 1 ... N ) ( p ` i ) = ( ( ( 1 - r ) x. ( Z ` i ) ) + ( r x. ( U ` i ) ) ) ) ) ) |
| 292 |
272 284 291
|
3imtr4d |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) /\ ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) ) -> ( ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) -> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) |
| 293 |
292
|
3expia |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) ) -> ( ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) -> ( ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) -> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) ) |
| 294 |
293
|
impd |
|- ( ( ( N e. NN /\ b e. ( EE ` N ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) ) -> ( ( ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) /\ ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) ) -> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) |
| 295 |
32 294
|
sylanl2 |
|- ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ Z =/= U ) ) -> ( ( ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) /\ ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) ) -> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) |
| 296 |
295
|
3adantr2 |
|- ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> ( ( ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) /\ ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) ) -> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) |
| 297 |
296
|
adantr |
|- ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> ( ( ( U e. ( EE ` N ) /\ p e. ( EE ` N ) ) /\ ( U Btwn <. Z , b >. /\ p Btwn <. Z , b >. ) ) -> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) |
| 298 |
31 297
|
mpd |
|- ( ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) /\ p e. A ) -> ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) |
| 299 |
298
|
ralrimiva |
|- ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) /\ ( Z e. ( EE ` N ) /\ U e. A /\ Z =/= U ) ) -> A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) |
| 300 |
299
|
3exp2 |
|- ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ b e. ( EE ` N ) /\ A. x e. A x Btwn <. Z , b >. ) ) -> ( Z e. ( EE ` N ) -> ( U e. A -> ( Z =/= U -> A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) ) ) |
| 301 |
12 300
|
syl6 |
|- ( b e. B -> ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) -> ( Z e. ( EE ` N ) -> ( U e. A -> ( Z =/= U -> A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) ) ) ) |
| 302 |
301
|
exlimiv |
|- ( E. b b e. B -> ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) -> ( Z e. ( EE ` N ) -> ( U e. A -> ( Z =/= U -> A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) ) ) ) |
| 303 |
3 302
|
sylbi |
|- ( B =/= (/) -> ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) -> ( Z e. ( EE ` N ) -> ( U e. A -> ( Z =/= U -> A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) ) ) ) |
| 304 |
303
|
com4l |
|- ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) -> ( Z e. ( EE ` N ) -> ( U e. A -> ( B =/= (/) -> ( Z =/= U -> A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) ) ) ) |
| 305 |
304
|
3impd |
|- ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) -> ( ( Z e. ( EE ` N ) /\ U e. A /\ B =/= (/) ) -> ( Z =/= U -> A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) ) |
| 306 |
305
|
imp32 |
|- ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( ( Z e. ( EE ` N ) /\ U e. A /\ B =/= (/) ) /\ Z =/= U ) ) -> A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) |
| 307 |
1
|
sseq2i |
|- ( A C_ D <-> A C_ { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } ) |
| 308 |
|
ssrab |
|- ( A C_ { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } <-> ( A C_ ( EE ` N ) /\ A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) |
| 309 |
307 308
|
bitri |
|- ( A C_ D <-> ( A C_ ( EE ` N ) /\ A. p e. A ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) ) ) |
| 310 |
2 306 309
|
sylanbrc |
|- ( ( ( N e. NN /\ ( A C_ ( EE ` N ) /\ B C_ ( EE ` N ) /\ A. x e. A A. y e. B x Btwn <. Z , y >. ) ) /\ ( ( Z e. ( EE ` N ) /\ U e. A /\ B =/= (/) ) /\ Z =/= U ) ) -> A C_ D ) |