| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axcontlem7.1 |
|- D = { p e. ( EE ` N ) | ( U Btwn <. Z , p >. \/ p Btwn <. Z , U >. ) } |
| 2 |
|
axcontlem7.2 |
|- F = { <. x , t >. | ( x e. D /\ ( t e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( U ` i ) ) ) ) ) } |
| 3 |
1
|
ssrab3 |
|- D C_ ( EE ` N ) |
| 4 |
3
|
sseli |
|- ( P e. D -> P e. ( EE ` N ) ) |
| 5 |
4
|
ad2antrl |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( P e. D /\ Q e. D ) ) -> P e. ( EE ` N ) ) |
| 6 |
|
simpll2 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( P e. D /\ Q e. D ) ) -> Z e. ( EE ` N ) ) |
| 7 |
3
|
sseli |
|- ( Q e. D -> Q e. ( EE ` N ) ) |
| 8 |
7
|
ad2antll |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( P e. D /\ Q e. D ) ) -> Q e. ( EE ` N ) ) |
| 9 |
|
brbtwn |
|- ( ( P e. ( EE ` N ) /\ Z e. ( EE ` N ) /\ Q e. ( EE ` N ) ) -> ( P Btwn <. Z , Q >. <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) ) ) |
| 10 |
5 6 8 9
|
syl3anc |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( P e. D /\ Q e. D ) ) -> ( P Btwn <. Z , Q >. <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) ) ) |
| 11 |
1 2
|
axcontlem6 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ P e. D ) -> ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) ) |
| 12 |
1 2
|
axcontlem6 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ Q e. D ) -> ( ( F ` Q ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) |
| 13 |
11 12
|
anim12dan |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( P e. D /\ Q e. D ) ) -> ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) /\ ( ( F ` Q ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) |
| 14 |
|
an4 |
|- ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) /\ ( ( F ` Q ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) |
| 15 |
|
r19.26 |
|- ( A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) <-> ( A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) |
| 16 |
15
|
anbi2i |
|- ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ A. i e. ( 1 ... N ) ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) |
| 17 |
14 16
|
bitr4i |
|- ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) /\ ( ( F ` Q ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) |
| 18 |
|
id |
|- ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) -> ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) |
| 19 |
|
oveq2 |
|- ( ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) -> ( t x. ( Q ` i ) ) = ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) |
| 20 |
19
|
oveq2d |
|- ( ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) |
| 21 |
18 20
|
eqeqan12d |
|- ( ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) -> ( ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) ) |
| 22 |
21
|
ralimi |
|- ( A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) ) |
| 23 |
|
ralbi |
|- ( A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) -> ( A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) ) |
| 24 |
22 23
|
syl |
|- ( A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) -> ( A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) ) |
| 25 |
24
|
rexbidv |
|- ( A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) ) |
| 26 |
|
simpll2 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> Z e. ( EE ` N ) ) |
| 27 |
|
fveecn |
|- ( ( Z e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) |
| 28 |
26 27
|
sylan |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( Z ` i ) e. CC ) |
| 29 |
|
simpll3 |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> U e. ( EE ` N ) ) |
| 30 |
|
fveecn |
|- ( ( U e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( U ` i ) e. CC ) |
| 31 |
29 30
|
sylan |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( U ` i ) e. CC ) |
| 32 |
|
elicc01 |
|- ( t e. ( 0 [,] 1 ) <-> ( t e. RR /\ 0 <_ t /\ t <_ 1 ) ) |
| 33 |
32
|
simp1bi |
|- ( t e. ( 0 [,] 1 ) -> t e. RR ) |
| 34 |
33
|
recnd |
|- ( t e. ( 0 [,] 1 ) -> t e. CC ) |
| 35 |
34
|
ad2antll |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> t e. CC ) |
| 36 |
35
|
adantr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> t e. CC ) |
| 37 |
|
elrege0 |
|- ( ( F ` P ) e. ( 0 [,) +oo ) <-> ( ( F ` P ) e. RR /\ 0 <_ ( F ` P ) ) ) |
| 38 |
37
|
simplbi |
|- ( ( F ` P ) e. ( 0 [,) +oo ) -> ( F ` P ) e. RR ) |
| 39 |
38
|
recnd |
|- ( ( F ` P ) e. ( 0 [,) +oo ) -> ( F ` P ) e. CC ) |
| 40 |
39
|
adantr |
|- ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( F ` P ) e. CC ) |
| 41 |
40
|
ad2antrl |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( F ` P ) e. CC ) |
| 42 |
41
|
adantr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( F ` P ) e. CC ) |
| 43 |
|
elrege0 |
|- ( ( F ` Q ) e. ( 0 [,) +oo ) <-> ( ( F ` Q ) e. RR /\ 0 <_ ( F ` Q ) ) ) |
| 44 |
43
|
simplbi |
|- ( ( F ` Q ) e. ( 0 [,) +oo ) -> ( F ` Q ) e. RR ) |
| 45 |
44
|
recnd |
|- ( ( F ` Q ) e. ( 0 [,) +oo ) -> ( F ` Q ) e. CC ) |
| 46 |
45
|
adantl |
|- ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( F ` Q ) e. CC ) |
| 47 |
46
|
ad2antrl |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( F ` Q ) e. CC ) |
| 48 |
47
|
adantr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( F ` Q ) e. CC ) |
| 49 |
|
ax-1cn |
|- 1 e. CC |
| 50 |
|
simpr1 |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> t e. CC ) |
| 51 |
|
simpr3 |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( F ` Q ) e. CC ) |
| 52 |
50 51
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( t x. ( F ` Q ) ) e. CC ) |
| 53 |
|
subcl |
|- ( ( 1 e. CC /\ ( t x. ( F ` Q ) ) e. CC ) -> ( 1 - ( t x. ( F ` Q ) ) ) e. CC ) |
| 54 |
49 52 53
|
sylancr |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( 1 - ( t x. ( F ` Q ) ) ) e. CC ) |
| 55 |
|
subcl |
|- ( ( 1 e. CC /\ ( F ` P ) e. CC ) -> ( 1 - ( F ` P ) ) e. CC ) |
| 56 |
49 55
|
mpan |
|- ( ( F ` P ) e. CC -> ( 1 - ( F ` P ) ) e. CC ) |
| 57 |
56
|
3ad2ant2 |
|- ( ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) -> ( 1 - ( F ` P ) ) e. CC ) |
| 58 |
57
|
adantl |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( 1 - ( F ` P ) ) e. CC ) |
| 59 |
|
simpll |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( Z ` i ) e. CC ) |
| 60 |
54 58 59
|
subdird |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( 1 - ( t x. ( F ` Q ) ) ) - ( 1 - ( F ` P ) ) ) x. ( Z ` i ) ) = ( ( ( 1 - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) - ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) ) ) |
| 61 |
|
simpr2 |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( F ` P ) e. CC ) |
| 62 |
|
nnncan1 |
|- ( ( 1 e. CC /\ ( t x. ( F ` Q ) ) e. CC /\ ( F ` P ) e. CC ) -> ( ( 1 - ( t x. ( F ` Q ) ) ) - ( 1 - ( F ` P ) ) ) = ( ( F ` P ) - ( t x. ( F ` Q ) ) ) ) |
| 63 |
49 52 61 62
|
mp3an2i |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( 1 - ( t x. ( F ` Q ) ) ) - ( 1 - ( F ` P ) ) ) = ( ( F ` P ) - ( t x. ( F ` Q ) ) ) ) |
| 64 |
63
|
oveq1d |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( 1 - ( t x. ( F ` Q ) ) ) - ( 1 - ( F ` P ) ) ) x. ( Z ` i ) ) = ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) ) |
| 65 |
|
subdi |
|- ( ( t e. CC /\ 1 e. CC /\ ( F ` Q ) e. CC ) -> ( t x. ( 1 - ( F ` Q ) ) ) = ( ( t x. 1 ) - ( t x. ( F ` Q ) ) ) ) |
| 66 |
49 65
|
mp3an2 |
|- ( ( t e. CC /\ ( F ` Q ) e. CC ) -> ( t x. ( 1 - ( F ` Q ) ) ) = ( ( t x. 1 ) - ( t x. ( F ` Q ) ) ) ) |
| 67 |
|
mulrid |
|- ( t e. CC -> ( t x. 1 ) = t ) |
| 68 |
67
|
adantr |
|- ( ( t e. CC /\ ( F ` Q ) e. CC ) -> ( t x. 1 ) = t ) |
| 69 |
68
|
oveq1d |
|- ( ( t e. CC /\ ( F ` Q ) e. CC ) -> ( ( t x. 1 ) - ( t x. ( F ` Q ) ) ) = ( t - ( t x. ( F ` Q ) ) ) ) |
| 70 |
66 69
|
eqtrd |
|- ( ( t e. CC /\ ( F ` Q ) e. CC ) -> ( t x. ( 1 - ( F ` Q ) ) ) = ( t - ( t x. ( F ` Q ) ) ) ) |
| 71 |
50 51 70
|
syl2anc |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( t x. ( 1 - ( F ` Q ) ) ) = ( t - ( t x. ( F ` Q ) ) ) ) |
| 72 |
71
|
oveq2d |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( 1 - t ) + ( t x. ( 1 - ( F ` Q ) ) ) ) = ( ( 1 - t ) + ( t - ( t x. ( F ` Q ) ) ) ) ) |
| 73 |
|
npncan |
|- ( ( 1 e. CC /\ t e. CC /\ ( t x. ( F ` Q ) ) e. CC ) -> ( ( 1 - t ) + ( t - ( t x. ( F ` Q ) ) ) ) = ( 1 - ( t x. ( F ` Q ) ) ) ) |
| 74 |
49 50 52 73
|
mp3an2i |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( 1 - t ) + ( t - ( t x. ( F ` Q ) ) ) ) = ( 1 - ( t x. ( F ` Q ) ) ) ) |
| 75 |
72 74
|
eqtr2d |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( 1 - ( t x. ( F ` Q ) ) ) = ( ( 1 - t ) + ( t x. ( 1 - ( F ` Q ) ) ) ) ) |
| 76 |
75
|
oveq1d |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( 1 - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( 1 - t ) + ( t x. ( 1 - ( F ` Q ) ) ) ) x. ( Z ` i ) ) ) |
| 77 |
|
subcl |
|- ( ( 1 e. CC /\ t e. CC ) -> ( 1 - t ) e. CC ) |
| 78 |
49 77
|
mpan |
|- ( t e. CC -> ( 1 - t ) e. CC ) |
| 79 |
78
|
3ad2ant1 |
|- ( ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) -> ( 1 - t ) e. CC ) |
| 80 |
79
|
adantl |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( 1 - t ) e. CC ) |
| 81 |
|
subcl |
|- ( ( 1 e. CC /\ ( F ` Q ) e. CC ) -> ( 1 - ( F ` Q ) ) e. CC ) |
| 82 |
49 81
|
mpan |
|- ( ( F ` Q ) e. CC -> ( 1 - ( F ` Q ) ) e. CC ) |
| 83 |
82
|
3ad2ant3 |
|- ( ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) -> ( 1 - ( F ` Q ) ) e. CC ) |
| 84 |
83
|
adantl |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( 1 - ( F ` Q ) ) e. CC ) |
| 85 |
50 84
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( t x. ( 1 - ( F ` Q ) ) ) e. CC ) |
| 86 |
80 85 59
|
adddird |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( 1 - t ) + ( t x. ( 1 - ( F ` Q ) ) ) ) x. ( Z ` i ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( ( t x. ( 1 - ( F ` Q ) ) ) x. ( Z ` i ) ) ) ) |
| 87 |
50 84 59
|
mulassd |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( t x. ( 1 - ( F ` Q ) ) ) x. ( Z ` i ) ) = ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) |
| 88 |
87
|
oveq2d |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( ( t x. ( 1 - ( F ` Q ) ) ) x. ( Z ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) ) |
| 89 |
76 86 88
|
3eqtrd |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( 1 - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) ) |
| 90 |
89
|
oveq1d |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( 1 - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) - ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) ) = ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) - ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) ) ) |
| 91 |
60 64 90
|
3eqtr3d |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) - ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) ) ) |
| 92 |
|
simplr |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( U ` i ) e. CC ) |
| 93 |
61 52 92
|
subdird |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) = ( ( ( F ` P ) x. ( U ` i ) ) - ( ( t x. ( F ` Q ) ) x. ( U ` i ) ) ) ) |
| 94 |
50 51 92
|
mulassd |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( t x. ( F ` Q ) ) x. ( U ` i ) ) = ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) |
| 95 |
94
|
oveq2d |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( F ` P ) x. ( U ` i ) ) - ( ( t x. ( F ` Q ) ) x. ( U ` i ) ) ) = ( ( ( F ` P ) x. ( U ` i ) ) - ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) ) |
| 96 |
93 95
|
eqtrd |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) = ( ( ( F ` P ) x. ( U ` i ) ) - ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) ) |
| 97 |
91 96
|
eqeq12d |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) <-> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) - ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) ) = ( ( ( F ` P ) x. ( U ` i ) ) - ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) |
| 98 |
58 59
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) e. CC ) |
| 99 |
61 92
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( F ` P ) x. ( U ` i ) ) e. CC ) |
| 100 |
80 59
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( 1 - t ) x. ( Z ` i ) ) e. CC ) |
| 101 |
84 59
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) e. CC ) |
| 102 |
50 101
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) e. CC ) |
| 103 |
100 102
|
addcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) e. CC ) |
| 104 |
51 92
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( F ` Q ) x. ( U ` i ) ) e. CC ) |
| 105 |
50 104
|
mulcld |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) e. CC ) |
| 106 |
98 99 103 105
|
addsubeq4d |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) + ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) <-> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) - ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) ) = ( ( ( F ` P ) x. ( U ` i ) ) - ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) |
| 107 |
100 102 105
|
addassd |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) + ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) + ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) |
| 108 |
50 101 104
|
adddid |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) = ( ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) + ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) ) |
| 109 |
108
|
oveq2d |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) + ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) |
| 110 |
107 109
|
eqtr4d |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) + ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) |
| 111 |
110
|
eqeq2d |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) ) ) + ( t x. ( ( F ` Q ) x. ( U ` i ) ) ) ) <-> ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) ) |
| 112 |
97 106 111
|
3bitr2rd |
|- ( ( ( ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) /\ ( t e. CC /\ ( F ` P ) e. CC /\ ( F ` Q ) e. CC ) ) -> ( ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) ) ) |
| 113 |
28 31 36 42 48 112
|
syl23anc |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) ) ) |
| 114 |
113
|
ralbidva |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) ) ) |
| 115 |
36 48
|
mulcld |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( t x. ( F ` Q ) ) e. CC ) |
| 116 |
42 115
|
subcld |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( F ` P ) - ( t x. ( F ` Q ) ) ) e. CC ) |
| 117 |
|
mulcan1g |
|- ( ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) e. CC /\ ( Z ` i ) e. CC /\ ( U ` i ) e. CC ) -> ( ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ ( Z ` i ) = ( U ` i ) ) ) ) |
| 118 |
116 28 31 117
|
syl3anc |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ ( Z ` i ) = ( U ` i ) ) ) ) |
| 119 |
118
|
ralbidva |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( Z ` i ) ) = ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) x. ( U ` i ) ) <-> A. i e. ( 1 ... N ) ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ ( Z ` i ) = ( U ` i ) ) ) ) |
| 120 |
|
r19.32v |
|- ( A. i e. ( 1 ... N ) ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ ( Z ` i ) = ( U ` i ) ) <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) |
| 121 |
|
simplr |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> Z =/= U ) |
| 122 |
121
|
neneqd |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> -. Z = U ) |
| 123 |
|
biorf |
|- ( -. Z = U -> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 <-> ( Z = U \/ ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 ) ) ) |
| 124 |
|
orcom |
|- ( ( Z = U \/ ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 ) <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ Z = U ) ) |
| 125 |
123 124
|
bitrdi |
|- ( -. Z = U -> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ Z = U ) ) ) |
| 126 |
122 125
|
syl |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ Z = U ) ) ) |
| 127 |
35 47
|
mulcld |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( t x. ( F ` Q ) ) e. CC ) |
| 128 |
41 127
|
subeq0ad |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 <-> ( F ` P ) = ( t x. ( F ` Q ) ) ) ) |
| 129 |
|
eqeefv |
|- ( ( Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) |
| 130 |
129
|
3adant1 |
|- ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) |
| 131 |
130
|
adantr |
|- ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) |
| 132 |
131
|
adantr |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( Z = U <-> A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) |
| 133 |
132
|
orbi2d |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ Z = U ) <-> ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) ) ) |
| 134 |
126 128 133
|
3bitr3rd |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ A. i e. ( 1 ... N ) ( Z ` i ) = ( U ` i ) ) <-> ( F ` P ) = ( t x. ( F ` Q ) ) ) ) |
| 135 |
120 134
|
bitrid |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( ( F ` P ) - ( t x. ( F ` Q ) ) ) = 0 \/ ( Z ` i ) = ( U ` i ) ) <-> ( F ` P ) = ( t x. ( F ` Q ) ) ) ) |
| 136 |
114 119 135
|
3bitrd |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> ( F ` P ) = ( t x. ( F ` Q ) ) ) ) |
| 137 |
136
|
anassrs |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) ) /\ t e. ( 0 [,] 1 ) ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> ( F ` P ) = ( t x. ( F ` Q ) ) ) ) |
| 138 |
137
|
rexbidva |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) ) |
| 139 |
33
|
adantl |
|- ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> t e. RR ) |
| 140 |
|
1red |
|- ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> 1 e. RR ) |
| 141 |
43
|
biimpi |
|- ( ( F ` Q ) e. ( 0 [,) +oo ) -> ( ( F ` Q ) e. RR /\ 0 <_ ( F ` Q ) ) ) |
| 142 |
141
|
ad2antlr |
|- ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> ( ( F ` Q ) e. RR /\ 0 <_ ( F ` Q ) ) ) |
| 143 |
32
|
simp3bi |
|- ( t e. ( 0 [,] 1 ) -> t <_ 1 ) |
| 144 |
143
|
adantl |
|- ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> t <_ 1 ) |
| 145 |
|
lemul1a |
|- ( ( ( t e. RR /\ 1 e. RR /\ ( ( F ` Q ) e. RR /\ 0 <_ ( F ` Q ) ) ) /\ t <_ 1 ) -> ( t x. ( F ` Q ) ) <_ ( 1 x. ( F ` Q ) ) ) |
| 146 |
139 140 142 144 145
|
syl31anc |
|- ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> ( t x. ( F ` Q ) ) <_ ( 1 x. ( F ` Q ) ) ) |
| 147 |
45
|
ad2antlr |
|- ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> ( F ` Q ) e. CC ) |
| 148 |
147
|
mullidd |
|- ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> ( 1 x. ( F ` Q ) ) = ( F ` Q ) ) |
| 149 |
146 148
|
breqtrd |
|- ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> ( t x. ( F ` Q ) ) <_ ( F ` Q ) ) |
| 150 |
|
breq1 |
|- ( ( F ` P ) = ( t x. ( F ` Q ) ) -> ( ( F ` P ) <_ ( F ` Q ) <-> ( t x. ( F ` Q ) ) <_ ( F ` Q ) ) ) |
| 151 |
149 150
|
syl5ibrcom |
|- ( ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ t e. ( 0 [,] 1 ) ) -> ( ( F ` P ) = ( t x. ( F ` Q ) ) -> ( F ` P ) <_ ( F ` Q ) ) ) |
| 152 |
151
|
rexlimdva |
|- ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) -> ( F ` P ) <_ ( F ` Q ) ) ) |
| 153 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 154 |
|
simpl |
|- ( ( ( F ` P ) = 0 /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( F ` P ) = 0 ) |
| 155 |
45
|
mul02d |
|- ( ( F ` Q ) e. ( 0 [,) +oo ) -> ( 0 x. ( F ` Q ) ) = 0 ) |
| 156 |
155
|
adantl |
|- ( ( ( F ` P ) = 0 /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( 0 x. ( F ` Q ) ) = 0 ) |
| 157 |
154 156
|
eqtr4d |
|- ( ( ( F ` P ) = 0 /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( F ` P ) = ( 0 x. ( F ` Q ) ) ) |
| 158 |
|
oveq1 |
|- ( t = 0 -> ( t x. ( F ` Q ) ) = ( 0 x. ( F ` Q ) ) ) |
| 159 |
158
|
rspceeqv |
|- ( ( 0 e. ( 0 [,] 1 ) /\ ( F ` P ) = ( 0 x. ( F ` Q ) ) ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) |
| 160 |
153 157 159
|
sylancr |
|- ( ( ( F ` P ) = 0 /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) |
| 161 |
160
|
adantrl |
|- ( ( ( F ` P ) = 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) |
| 162 |
161
|
a1d |
|- ( ( ( F ` P ) = 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) ) -> ( ( F ` P ) <_ ( F ` Q ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) ) |
| 163 |
162
|
ex |
|- ( ( F ` P ) = 0 -> ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( ( F ` P ) <_ ( F ` Q ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) ) ) |
| 164 |
|
simp3 |
|- ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( F ` P ) <_ ( F ` Q ) ) |
| 165 |
38
|
adantr |
|- ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( F ` P ) e. RR ) |
| 166 |
165
|
3ad2ant2 |
|- ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( F ` P ) e. RR ) |
| 167 |
37
|
simprbi |
|- ( ( F ` P ) e. ( 0 [,) +oo ) -> 0 <_ ( F ` P ) ) |
| 168 |
167
|
adantr |
|- ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> 0 <_ ( F ` P ) ) |
| 169 |
168
|
3ad2ant2 |
|- ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> 0 <_ ( F ` P ) ) |
| 170 |
44
|
adantl |
|- ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( F ` Q ) e. RR ) |
| 171 |
170
|
3ad2ant2 |
|- ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( F ` Q ) e. RR ) |
| 172 |
|
0red |
|- ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> 0 e. RR ) |
| 173 |
|
simp1 |
|- ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( F ` P ) =/= 0 ) |
| 174 |
166 169 173
|
ne0gt0d |
|- ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> 0 < ( F ` P ) ) |
| 175 |
172 166 171 174 164
|
ltletrd |
|- ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> 0 < ( F ` Q ) ) |
| 176 |
|
divelunit |
|- ( ( ( ( F ` P ) e. RR /\ 0 <_ ( F ` P ) ) /\ ( ( F ` Q ) e. RR /\ 0 < ( F ` Q ) ) ) -> ( ( ( F ` P ) / ( F ` Q ) ) e. ( 0 [,] 1 ) <-> ( F ` P ) <_ ( F ` Q ) ) ) |
| 177 |
166 169 171 175 176
|
syl22anc |
|- ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( ( ( F ` P ) / ( F ` Q ) ) e. ( 0 [,] 1 ) <-> ( F ` P ) <_ ( F ` Q ) ) ) |
| 178 |
164 177
|
mpbird |
|- ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( ( F ` P ) / ( F ` Q ) ) e. ( 0 [,] 1 ) ) |
| 179 |
40
|
3ad2ant2 |
|- ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( F ` P ) e. CC ) |
| 180 |
46
|
3ad2ant2 |
|- ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( F ` Q ) e. CC ) |
| 181 |
175
|
gt0ne0d |
|- ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( F ` Q ) =/= 0 ) |
| 182 |
179 180 181
|
divcan1d |
|- ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( ( ( F ` P ) / ( F ` Q ) ) x. ( F ` Q ) ) = ( F ` P ) ) |
| 183 |
182
|
eqcomd |
|- ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> ( F ` P ) = ( ( ( F ` P ) / ( F ` Q ) ) x. ( F ` Q ) ) ) |
| 184 |
|
oveq1 |
|- ( t = ( ( F ` P ) / ( F ` Q ) ) -> ( t x. ( F ` Q ) ) = ( ( ( F ` P ) / ( F ` Q ) ) x. ( F ` Q ) ) ) |
| 185 |
184
|
rspceeqv |
|- ( ( ( ( F ` P ) / ( F ` Q ) ) e. ( 0 [,] 1 ) /\ ( F ` P ) = ( ( ( F ` P ) / ( F ` Q ) ) x. ( F ` Q ) ) ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) |
| 186 |
178 183 185
|
syl2anc |
|- ( ( ( F ` P ) =/= 0 /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ ( F ` P ) <_ ( F ` Q ) ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) |
| 187 |
186
|
3exp |
|- ( ( F ` P ) =/= 0 -> ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( ( F ` P ) <_ ( F ` Q ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) ) ) |
| 188 |
163 187
|
pm2.61ine |
|- ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( ( F ` P ) <_ ( F ` Q ) -> E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) ) ) |
| 189 |
152 188
|
impbid |
|- ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) -> ( E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) <-> ( F ` P ) <_ ( F ` Q ) ) ) |
| 190 |
189
|
adantl |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) ) -> ( E. t e. ( 0 [,] 1 ) ( F ` P ) = ( t x. ( F ` Q ) ) <-> ( F ` P ) <_ ( F ` Q ) ) ) |
| 191 |
138 190
|
bitrd |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) <-> ( F ` P ) <_ ( F ` Q ) ) ) |
| 192 |
25 191
|
sylan9bbr |
|- ( ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) ) /\ A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> ( F ` P ) <_ ( F ` Q ) ) ) |
| 193 |
192
|
anasss |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ ( F ` Q ) e. ( 0 [,) +oo ) ) /\ A. i e. ( 1 ... N ) ( ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) /\ ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> ( F ` P ) <_ ( F ` Q ) ) ) |
| 194 |
17 193
|
sylan2b |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( ( ( F ` P ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - ( F ` P ) ) x. ( Z ` i ) ) + ( ( F ` P ) x. ( U ` i ) ) ) ) /\ ( ( F ` Q ) e. ( 0 [,) +oo ) /\ A. i e. ( 1 ... N ) ( Q ` i ) = ( ( ( 1 - ( F ` Q ) ) x. ( Z ` i ) ) + ( ( F ` Q ) x. ( U ` i ) ) ) ) ) ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> ( F ` P ) <_ ( F ` Q ) ) ) |
| 195 |
13 194
|
syldan |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( P e. D /\ Q e. D ) ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( P ` i ) = ( ( ( 1 - t ) x. ( Z ` i ) ) + ( t x. ( Q ` i ) ) ) <-> ( F ` P ) <_ ( F ` Q ) ) ) |
| 196 |
10 195
|
bitrd |
|- ( ( ( ( N e. NN /\ Z e. ( EE ` N ) /\ U e. ( EE ` N ) ) /\ Z =/= U ) /\ ( P e. D /\ Q e. D ) ) -> ( P Btwn <. Z , Q >. <-> ( F ` P ) <_ ( F ` Q ) ) ) |