| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq2 |
|- ( w = z -> ( u x w <-> u x z ) ) |
| 2 |
1
|
cbvabv |
|- { w | u x w } = { z | u x z } |
| 3 |
|
breq1 |
|- ( u = v -> ( u x z <-> v x z ) ) |
| 4 |
3
|
abbidv |
|- ( u = v -> { z | u x z } = { z | v x z } ) |
| 5 |
2 4
|
eqtrid |
|- ( u = v -> { w | u x w } = { z | v x z } ) |
| 6 |
5
|
fveq2d |
|- ( u = v -> ( g ` { w | u x w } ) = ( g ` { z | v x z } ) ) |
| 7 |
6
|
cbvmptv |
|- ( u e. _V |-> ( g ` { w | u x w } ) ) = ( v e. _V |-> ( g ` { z | v x z } ) ) |
| 8 |
|
rdgeq1 |
|- ( ( u e. _V |-> ( g ` { w | u x w } ) ) = ( v e. _V |-> ( g ` { z | v x z } ) ) -> rec ( ( u e. _V |-> ( g ` { w | u x w } ) ) , y ) = rec ( ( v e. _V |-> ( g ` { z | v x z } ) ) , y ) ) |
| 9 |
7 8
|
ax-mp |
|- rec ( ( u e. _V |-> ( g ` { w | u x w } ) ) , y ) = rec ( ( v e. _V |-> ( g ` { z | v x z } ) ) , y ) |
| 10 |
9
|
reseq1i |
|- ( rec ( ( u e. _V |-> ( g ` { w | u x w } ) ) , y ) |` _om ) = ( rec ( ( v e. _V |-> ( g ` { z | v x z } ) ) , y ) |` _om ) |
| 11 |
10
|
axdclem2 |
|- ( E. z y x z -> ( ran x C_ dom x -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) ) |
| 12 |
11
|
exlimiv |
|- ( E. y E. z y x z -> ( ran x C_ dom x -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) ) |
| 13 |
12
|
imp |
|- ( ( E. y E. z y x z /\ ran x C_ dom x ) -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) |