Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
|- ( w = z -> ( u x w <-> u x z ) ) |
2 |
1
|
cbvabv |
|- { w | u x w } = { z | u x z } |
3 |
|
breq1 |
|- ( u = v -> ( u x z <-> v x z ) ) |
4 |
3
|
abbidv |
|- ( u = v -> { z | u x z } = { z | v x z } ) |
5 |
2 4
|
eqtrid |
|- ( u = v -> { w | u x w } = { z | v x z } ) |
6 |
5
|
fveq2d |
|- ( u = v -> ( g ` { w | u x w } ) = ( g ` { z | v x z } ) ) |
7 |
6
|
cbvmptv |
|- ( u e. _V |-> ( g ` { w | u x w } ) ) = ( v e. _V |-> ( g ` { z | v x z } ) ) |
8 |
|
rdgeq1 |
|- ( ( u e. _V |-> ( g ` { w | u x w } ) ) = ( v e. _V |-> ( g ` { z | v x z } ) ) -> rec ( ( u e. _V |-> ( g ` { w | u x w } ) ) , y ) = rec ( ( v e. _V |-> ( g ` { z | v x z } ) ) , y ) ) |
9 |
|
reseq1 |
|- ( rec ( ( u e. _V |-> ( g ` { w | u x w } ) ) , y ) = rec ( ( v e. _V |-> ( g ` { z | v x z } ) ) , y ) -> ( rec ( ( u e. _V |-> ( g ` { w | u x w } ) ) , y ) |` _om ) = ( rec ( ( v e. _V |-> ( g ` { z | v x z } ) ) , y ) |` _om ) ) |
10 |
7 8 9
|
mp2b |
|- ( rec ( ( u e. _V |-> ( g ` { w | u x w } ) ) , y ) |` _om ) = ( rec ( ( v e. _V |-> ( g ` { z | v x z } ) ) , y ) |` _om ) |
11 |
10
|
axdclem2 |
|- ( E. z y x z -> ( ran x C_ dom x -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) ) |
12 |
11
|
exlimiv |
|- ( E. y E. z y x z -> ( ran x C_ dom x -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) ) |
13 |
12
|
imp |
|- ( ( E. y E. z y x z /\ ran x C_ dom x ) -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) |