Metamath Proof Explorer


Theorem axdc3lem

Description: The class S of finite approximations to the DC sequence is a set. (We derive here the stronger statement that S is a subset of a specific set, namely ~P ( _om X. A ) .) (Contributed by Mario Carneiro, 27-Jan-2013) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 18-Mar-2014)

Ref Expression
Hypotheses axdc3lem.1
|- A e. _V
axdc3lem.2
|- S = { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) }
Assertion axdc3lem
|- S e. _V

Proof

Step Hyp Ref Expression
1 axdc3lem.1
 |-  A e. _V
2 axdc3lem.2
 |-  S = { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) }
3 dcomex
 |-  _om e. _V
4 3 1 xpex
 |-  ( _om X. A ) e. _V
5 4 pwex
 |-  ~P ( _om X. A ) e. _V
6 fssxp
 |-  ( s : suc n --> A -> s C_ ( suc n X. A ) )
7 peano2
 |-  ( n e. _om -> suc n e. _om )
8 omelon2
 |-  ( _om e. _V -> _om e. On )
9 3 8 ax-mp
 |-  _om e. On
10 9 onelssi
 |-  ( suc n e. _om -> suc n C_ _om )
11 xpss1
 |-  ( suc n C_ _om -> ( suc n X. A ) C_ ( _om X. A ) )
12 7 10 11 3syl
 |-  ( n e. _om -> ( suc n X. A ) C_ ( _om X. A ) )
13 6 12 sylan9ss
 |-  ( ( s : suc n --> A /\ n e. _om ) -> s C_ ( _om X. A ) )
14 velpw
 |-  ( s e. ~P ( _om X. A ) <-> s C_ ( _om X. A ) )
15 13 14 sylibr
 |-  ( ( s : suc n --> A /\ n e. _om ) -> s e. ~P ( _om X. A ) )
16 15 ancoms
 |-  ( ( n e. _om /\ s : suc n --> A ) -> s e. ~P ( _om X. A ) )
17 16 3ad2antr1
 |-  ( ( n e. _om /\ ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) -> s e. ~P ( _om X. A ) )
18 17 rexlimiva
 |-  ( E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> s e. ~P ( _om X. A ) )
19 18 abssi
 |-  { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } C_ ~P ( _om X. A )
20 2 19 eqsstri
 |-  S C_ ~P ( _om X. A )
21 5 20 ssexi
 |-  S e. _V