| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axdc3lem.1 |  |-  A e. _V | 
						
							| 2 |  | axdc3lem.2 |  |-  S = { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } | 
						
							| 3 |  | dcomex |  |-  _om e. _V | 
						
							| 4 | 3 1 | xpex |  |-  ( _om X. A ) e. _V | 
						
							| 5 | 4 | pwex |  |-  ~P ( _om X. A ) e. _V | 
						
							| 6 |  | fssxp |  |-  ( s : suc n --> A -> s C_ ( suc n X. A ) ) | 
						
							| 7 |  | peano2 |  |-  ( n e. _om -> suc n e. _om ) | 
						
							| 8 |  | omelon2 |  |-  ( _om e. _V -> _om e. On ) | 
						
							| 9 | 3 8 | ax-mp |  |-  _om e. On | 
						
							| 10 | 9 | onelssi |  |-  ( suc n e. _om -> suc n C_ _om ) | 
						
							| 11 |  | xpss1 |  |-  ( suc n C_ _om -> ( suc n X. A ) C_ ( _om X. A ) ) | 
						
							| 12 | 7 10 11 | 3syl |  |-  ( n e. _om -> ( suc n X. A ) C_ ( _om X. A ) ) | 
						
							| 13 | 6 12 | sylan9ss |  |-  ( ( s : suc n --> A /\ n e. _om ) -> s C_ ( _om X. A ) ) | 
						
							| 14 |  | velpw |  |-  ( s e. ~P ( _om X. A ) <-> s C_ ( _om X. A ) ) | 
						
							| 15 | 13 14 | sylibr |  |-  ( ( s : suc n --> A /\ n e. _om ) -> s e. ~P ( _om X. A ) ) | 
						
							| 16 | 15 | ancoms |  |-  ( ( n e. _om /\ s : suc n --> A ) -> s e. ~P ( _om X. A ) ) | 
						
							| 17 | 16 | 3ad2antr1 |  |-  ( ( n e. _om /\ ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) -> s e. ~P ( _om X. A ) ) | 
						
							| 18 | 17 | rexlimiva |  |-  ( E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> s e. ~P ( _om X. A ) ) | 
						
							| 19 | 18 | abssi |  |-  { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } C_ ~P ( _om X. A ) | 
						
							| 20 | 2 19 | eqsstri |  |-  S C_ ~P ( _om X. A ) | 
						
							| 21 | 5 20 | ssexi |  |-  S e. _V |