| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axdc3lem2.1 |  |-  A e. _V | 
						
							| 2 |  | axdc3lem2.2 |  |-  S = { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } | 
						
							| 3 |  | axdc3lem2.3 |  |-  G = ( x e. S |-> { y e. S | ( dom y = suc dom x /\ ( y |` dom x ) = x ) } ) | 
						
							| 4 |  | id |  |-  ( m = (/) -> m = (/) ) | 
						
							| 5 |  | fveq2 |  |-  ( m = (/) -> ( h ` m ) = ( h ` (/) ) ) | 
						
							| 6 | 5 | dmeqd |  |-  ( m = (/) -> dom ( h ` m ) = dom ( h ` (/) ) ) | 
						
							| 7 | 4 6 | eleq12d |  |-  ( m = (/) -> ( m e. dom ( h ` m ) <-> (/) e. dom ( h ` (/) ) ) ) | 
						
							| 8 |  | eleq2 |  |-  ( m = (/) -> ( j e. m <-> j e. (/) ) ) | 
						
							| 9 | 5 | sseq2d |  |-  ( m = (/) -> ( ( h ` j ) C_ ( h ` m ) <-> ( h ` j ) C_ ( h ` (/) ) ) ) | 
						
							| 10 | 8 9 | imbi12d |  |-  ( m = (/) -> ( ( j e. m -> ( h ` j ) C_ ( h ` m ) ) <-> ( j e. (/) -> ( h ` j ) C_ ( h ` (/) ) ) ) ) | 
						
							| 11 | 7 10 | anbi12d |  |-  ( m = (/) -> ( ( m e. dom ( h ` m ) /\ ( j e. m -> ( h ` j ) C_ ( h ` m ) ) ) <-> ( (/) e. dom ( h ` (/) ) /\ ( j e. (/) -> ( h ` j ) C_ ( h ` (/) ) ) ) ) ) | 
						
							| 12 |  | id |  |-  ( m = i -> m = i ) | 
						
							| 13 |  | fveq2 |  |-  ( m = i -> ( h ` m ) = ( h ` i ) ) | 
						
							| 14 | 13 | dmeqd |  |-  ( m = i -> dom ( h ` m ) = dom ( h ` i ) ) | 
						
							| 15 | 12 14 | eleq12d |  |-  ( m = i -> ( m e. dom ( h ` m ) <-> i e. dom ( h ` i ) ) ) | 
						
							| 16 |  | elequ2 |  |-  ( m = i -> ( j e. m <-> j e. i ) ) | 
						
							| 17 | 13 | sseq2d |  |-  ( m = i -> ( ( h ` j ) C_ ( h ` m ) <-> ( h ` j ) C_ ( h ` i ) ) ) | 
						
							| 18 | 16 17 | imbi12d |  |-  ( m = i -> ( ( j e. m -> ( h ` j ) C_ ( h ` m ) ) <-> ( j e. i -> ( h ` j ) C_ ( h ` i ) ) ) ) | 
						
							| 19 | 15 18 | anbi12d |  |-  ( m = i -> ( ( m e. dom ( h ` m ) /\ ( j e. m -> ( h ` j ) C_ ( h ` m ) ) ) <-> ( i e. dom ( h ` i ) /\ ( j e. i -> ( h ` j ) C_ ( h ` i ) ) ) ) ) | 
						
							| 20 |  | id |  |-  ( m = suc i -> m = suc i ) | 
						
							| 21 |  | fveq2 |  |-  ( m = suc i -> ( h ` m ) = ( h ` suc i ) ) | 
						
							| 22 | 21 | dmeqd |  |-  ( m = suc i -> dom ( h ` m ) = dom ( h ` suc i ) ) | 
						
							| 23 | 20 22 | eleq12d |  |-  ( m = suc i -> ( m e. dom ( h ` m ) <-> suc i e. dom ( h ` suc i ) ) ) | 
						
							| 24 |  | eleq2 |  |-  ( m = suc i -> ( j e. m <-> j e. suc i ) ) | 
						
							| 25 | 21 | sseq2d |  |-  ( m = suc i -> ( ( h ` j ) C_ ( h ` m ) <-> ( h ` j ) C_ ( h ` suc i ) ) ) | 
						
							| 26 | 24 25 | imbi12d |  |-  ( m = suc i -> ( ( j e. m -> ( h ` j ) C_ ( h ` m ) ) <-> ( j e. suc i -> ( h ` j ) C_ ( h ` suc i ) ) ) ) | 
						
							| 27 | 23 26 | anbi12d |  |-  ( m = suc i -> ( ( m e. dom ( h ` m ) /\ ( j e. m -> ( h ` j ) C_ ( h ` m ) ) ) <-> ( suc i e. dom ( h ` suc i ) /\ ( j e. suc i -> ( h ` j ) C_ ( h ` suc i ) ) ) ) ) | 
						
							| 28 |  | peano1 |  |-  (/) e. _om | 
						
							| 29 |  | ffvelcdm |  |-  ( ( h : _om --> S /\ (/) e. _om ) -> ( h ` (/) ) e. S ) | 
						
							| 30 | 28 29 | mpan2 |  |-  ( h : _om --> S -> ( h ` (/) ) e. S ) | 
						
							| 31 |  | fdm |  |-  ( s : suc n --> A -> dom s = suc n ) | 
						
							| 32 |  | nnord |  |-  ( n e. _om -> Ord n ) | 
						
							| 33 |  | 0elsuc |  |-  ( Ord n -> (/) e. suc n ) | 
						
							| 34 | 32 33 | syl |  |-  ( n e. _om -> (/) e. suc n ) | 
						
							| 35 |  | peano2 |  |-  ( n e. _om -> suc n e. _om ) | 
						
							| 36 |  | eleq2 |  |-  ( dom s = suc n -> ( (/) e. dom s <-> (/) e. suc n ) ) | 
						
							| 37 |  | eleq1 |  |-  ( dom s = suc n -> ( dom s e. _om <-> suc n e. _om ) ) | 
						
							| 38 | 36 37 | anbi12d |  |-  ( dom s = suc n -> ( ( (/) e. dom s /\ dom s e. _om ) <-> ( (/) e. suc n /\ suc n e. _om ) ) ) | 
						
							| 39 | 38 | biimprcd |  |-  ( ( (/) e. suc n /\ suc n e. _om ) -> ( dom s = suc n -> ( (/) e. dom s /\ dom s e. _om ) ) ) | 
						
							| 40 | 34 35 39 | syl2anc |  |-  ( n e. _om -> ( dom s = suc n -> ( (/) e. dom s /\ dom s e. _om ) ) ) | 
						
							| 41 | 31 40 | syl5com |  |-  ( s : suc n --> A -> ( n e. _om -> ( (/) e. dom s /\ dom s e. _om ) ) ) | 
						
							| 42 | 41 | 3ad2ant1 |  |-  ( ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ( n e. _om -> ( (/) e. dom s /\ dom s e. _om ) ) ) | 
						
							| 43 | 42 | impcom |  |-  ( ( n e. _om /\ ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) -> ( (/) e. dom s /\ dom s e. _om ) ) | 
						
							| 44 | 43 | rexlimiva |  |-  ( E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ( (/) e. dom s /\ dom s e. _om ) ) | 
						
							| 45 | 44 | ss2abi |  |-  { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } C_ { s | ( (/) e. dom s /\ dom s e. _om ) } | 
						
							| 46 | 2 45 | eqsstri |  |-  S C_ { s | ( (/) e. dom s /\ dom s e. _om ) } | 
						
							| 47 | 46 | sseli |  |-  ( ( h ` (/) ) e. S -> ( h ` (/) ) e. { s | ( (/) e. dom s /\ dom s e. _om ) } ) | 
						
							| 48 |  | fvex |  |-  ( h ` (/) ) e. _V | 
						
							| 49 |  | dmeq |  |-  ( s = ( h ` (/) ) -> dom s = dom ( h ` (/) ) ) | 
						
							| 50 | 49 | eleq2d |  |-  ( s = ( h ` (/) ) -> ( (/) e. dom s <-> (/) e. dom ( h ` (/) ) ) ) | 
						
							| 51 | 49 | eleq1d |  |-  ( s = ( h ` (/) ) -> ( dom s e. _om <-> dom ( h ` (/) ) e. _om ) ) | 
						
							| 52 | 50 51 | anbi12d |  |-  ( s = ( h ` (/) ) -> ( ( (/) e. dom s /\ dom s e. _om ) <-> ( (/) e. dom ( h ` (/) ) /\ dom ( h ` (/) ) e. _om ) ) ) | 
						
							| 53 | 48 52 | elab |  |-  ( ( h ` (/) ) e. { s | ( (/) e. dom s /\ dom s e. _om ) } <-> ( (/) e. dom ( h ` (/) ) /\ dom ( h ` (/) ) e. _om ) ) | 
						
							| 54 | 47 53 | sylib |  |-  ( ( h ` (/) ) e. S -> ( (/) e. dom ( h ` (/) ) /\ dom ( h ` (/) ) e. _om ) ) | 
						
							| 55 | 54 | simpld |  |-  ( ( h ` (/) ) e. S -> (/) e. dom ( h ` (/) ) ) | 
						
							| 56 | 30 55 | syl |  |-  ( h : _om --> S -> (/) e. dom ( h ` (/) ) ) | 
						
							| 57 |  | noel |  |-  -. j e. (/) | 
						
							| 58 | 57 | pm2.21i |  |-  ( j e. (/) -> ( h ` j ) C_ ( h ` (/) ) ) | 
						
							| 59 | 56 58 | jctir |  |-  ( h : _om --> S -> ( (/) e. dom ( h ` (/) ) /\ ( j e. (/) -> ( h ` j ) C_ ( h ` (/) ) ) ) ) | 
						
							| 60 | 59 | adantr |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( (/) e. dom ( h ` (/) ) /\ ( j e. (/) -> ( h ` j ) C_ ( h ` (/) ) ) ) ) | 
						
							| 61 |  | ffvelcdm |  |-  ( ( h : _om --> S /\ i e. _om ) -> ( h ` i ) e. S ) | 
						
							| 62 | 61 | ancoms |  |-  ( ( i e. _om /\ h : _om --> S ) -> ( h ` i ) e. S ) | 
						
							| 63 | 62 | adantrr |  |-  ( ( i e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( h ` i ) e. S ) | 
						
							| 64 |  | suceq |  |-  ( k = i -> suc k = suc i ) | 
						
							| 65 | 64 | fveq2d |  |-  ( k = i -> ( h ` suc k ) = ( h ` suc i ) ) | 
						
							| 66 |  | 2fveq3 |  |-  ( k = i -> ( G ` ( h ` k ) ) = ( G ` ( h ` i ) ) ) | 
						
							| 67 | 65 66 | eleq12d |  |-  ( k = i -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) <-> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) ) | 
						
							| 68 | 67 | rspcva |  |-  ( ( i e. _om /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) | 
						
							| 69 | 68 | adantrl |  |-  ( ( i e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) | 
						
							| 70 | 46 | sseli |  |-  ( ( h ` i ) e. S -> ( h ` i ) e. { s | ( (/) e. dom s /\ dom s e. _om ) } ) | 
						
							| 71 |  | fvex |  |-  ( h ` i ) e. _V | 
						
							| 72 |  | dmeq |  |-  ( s = ( h ` i ) -> dom s = dom ( h ` i ) ) | 
						
							| 73 | 72 | eleq2d |  |-  ( s = ( h ` i ) -> ( (/) e. dom s <-> (/) e. dom ( h ` i ) ) ) | 
						
							| 74 | 72 | eleq1d |  |-  ( s = ( h ` i ) -> ( dom s e. _om <-> dom ( h ` i ) e. _om ) ) | 
						
							| 75 | 73 74 | anbi12d |  |-  ( s = ( h ` i ) -> ( ( (/) e. dom s /\ dom s e. _om ) <-> ( (/) e. dom ( h ` i ) /\ dom ( h ` i ) e. _om ) ) ) | 
						
							| 76 | 71 75 | elab |  |-  ( ( h ` i ) e. { s | ( (/) e. dom s /\ dom s e. _om ) } <-> ( (/) e. dom ( h ` i ) /\ dom ( h ` i ) e. _om ) ) | 
						
							| 77 | 70 76 | sylib |  |-  ( ( h ` i ) e. S -> ( (/) e. dom ( h ` i ) /\ dom ( h ` i ) e. _om ) ) | 
						
							| 78 | 77 | simprd |  |-  ( ( h ` i ) e. S -> dom ( h ` i ) e. _om ) | 
						
							| 79 |  | nnord |  |-  ( dom ( h ` i ) e. _om -> Ord dom ( h ` i ) ) | 
						
							| 80 |  | ordsucelsuc |  |-  ( Ord dom ( h ` i ) -> ( i e. dom ( h ` i ) <-> suc i e. suc dom ( h ` i ) ) ) | 
						
							| 81 | 78 79 80 | 3syl |  |-  ( ( h ` i ) e. S -> ( i e. dom ( h ` i ) <-> suc i e. suc dom ( h ` i ) ) ) | 
						
							| 82 | 81 | adantr |  |-  ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> ( i e. dom ( h ` i ) <-> suc i e. suc dom ( h ` i ) ) ) | 
						
							| 83 |  | dmeq |  |-  ( x = ( h ` i ) -> dom x = dom ( h ` i ) ) | 
						
							| 84 |  | suceq |  |-  ( dom x = dom ( h ` i ) -> suc dom x = suc dom ( h ` i ) ) | 
						
							| 85 | 83 84 | syl |  |-  ( x = ( h ` i ) -> suc dom x = suc dom ( h ` i ) ) | 
						
							| 86 | 85 | eqeq2d |  |-  ( x = ( h ` i ) -> ( dom y = suc dom x <-> dom y = suc dom ( h ` i ) ) ) | 
						
							| 87 | 83 | reseq2d |  |-  ( x = ( h ` i ) -> ( y |` dom x ) = ( y |` dom ( h ` i ) ) ) | 
						
							| 88 |  | id |  |-  ( x = ( h ` i ) -> x = ( h ` i ) ) | 
						
							| 89 | 87 88 | eqeq12d |  |-  ( x = ( h ` i ) -> ( ( y |` dom x ) = x <-> ( y |` dom ( h ` i ) ) = ( h ` i ) ) ) | 
						
							| 90 | 86 89 | anbi12d |  |-  ( x = ( h ` i ) -> ( ( dom y = suc dom x /\ ( y |` dom x ) = x ) <-> ( dom y = suc dom ( h ` i ) /\ ( y |` dom ( h ` i ) ) = ( h ` i ) ) ) ) | 
						
							| 91 | 90 | rabbidv |  |-  ( x = ( h ` i ) -> { y e. S | ( dom y = suc dom x /\ ( y |` dom x ) = x ) } = { y e. S | ( dom y = suc dom ( h ` i ) /\ ( y |` dom ( h ` i ) ) = ( h ` i ) ) } ) | 
						
							| 92 | 1 2 | axdc3lem |  |-  S e. _V | 
						
							| 93 | 92 | rabex |  |-  { y e. S | ( dom y = suc dom ( h ` i ) /\ ( y |` dom ( h ` i ) ) = ( h ` i ) ) } e. _V | 
						
							| 94 | 91 3 93 | fvmpt |  |-  ( ( h ` i ) e. S -> ( G ` ( h ` i ) ) = { y e. S | ( dom y = suc dom ( h ` i ) /\ ( y |` dom ( h ` i ) ) = ( h ` i ) ) } ) | 
						
							| 95 | 94 | eleq2d |  |-  ( ( h ` i ) e. S -> ( ( h ` suc i ) e. ( G ` ( h ` i ) ) <-> ( h ` suc i ) e. { y e. S | ( dom y = suc dom ( h ` i ) /\ ( y |` dom ( h ` i ) ) = ( h ` i ) ) } ) ) | 
						
							| 96 |  | dmeq |  |-  ( y = ( h ` suc i ) -> dom y = dom ( h ` suc i ) ) | 
						
							| 97 | 96 | eqeq1d |  |-  ( y = ( h ` suc i ) -> ( dom y = suc dom ( h ` i ) <-> dom ( h ` suc i ) = suc dom ( h ` i ) ) ) | 
						
							| 98 |  | reseq1 |  |-  ( y = ( h ` suc i ) -> ( y |` dom ( h ` i ) ) = ( ( h ` suc i ) |` dom ( h ` i ) ) ) | 
						
							| 99 | 98 | eqeq1d |  |-  ( y = ( h ` suc i ) -> ( ( y |` dom ( h ` i ) ) = ( h ` i ) <-> ( ( h ` suc i ) |` dom ( h ` i ) ) = ( h ` i ) ) ) | 
						
							| 100 | 97 99 | anbi12d |  |-  ( y = ( h ` suc i ) -> ( ( dom y = suc dom ( h ` i ) /\ ( y |` dom ( h ` i ) ) = ( h ` i ) ) <-> ( dom ( h ` suc i ) = suc dom ( h ` i ) /\ ( ( h ` suc i ) |` dom ( h ` i ) ) = ( h ` i ) ) ) ) | 
						
							| 101 | 100 | elrab |  |-  ( ( h ` suc i ) e. { y e. S | ( dom y = suc dom ( h ` i ) /\ ( y |` dom ( h ` i ) ) = ( h ` i ) ) } <-> ( ( h ` suc i ) e. S /\ ( dom ( h ` suc i ) = suc dom ( h ` i ) /\ ( ( h ` suc i ) |` dom ( h ` i ) ) = ( h ` i ) ) ) ) | 
						
							| 102 | 95 101 | bitrdi |  |-  ( ( h ` i ) e. S -> ( ( h ` suc i ) e. ( G ` ( h ` i ) ) <-> ( ( h ` suc i ) e. S /\ ( dom ( h ` suc i ) = suc dom ( h ` i ) /\ ( ( h ` suc i ) |` dom ( h ` i ) ) = ( h ` i ) ) ) ) ) | 
						
							| 103 | 102 | simplbda |  |-  ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> ( dom ( h ` suc i ) = suc dom ( h ` i ) /\ ( ( h ` suc i ) |` dom ( h ` i ) ) = ( h ` i ) ) ) | 
						
							| 104 | 103 | simpld |  |-  ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> dom ( h ` suc i ) = suc dom ( h ` i ) ) | 
						
							| 105 | 104 | eleq2d |  |-  ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> ( suc i e. dom ( h ` suc i ) <-> suc i e. suc dom ( h ` i ) ) ) | 
						
							| 106 | 82 105 | bitr4d |  |-  ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> ( i e. dom ( h ` i ) <-> suc i e. dom ( h ` suc i ) ) ) | 
						
							| 107 | 106 | biimpd |  |-  ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> ( i e. dom ( h ` i ) -> suc i e. dom ( h ` suc i ) ) ) | 
						
							| 108 | 103 | simprd |  |-  ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> ( ( h ` suc i ) |` dom ( h ` i ) ) = ( h ` i ) ) | 
						
							| 109 |  | resss |  |-  ( ( h ` suc i ) |` dom ( h ` i ) ) C_ ( h ` suc i ) | 
						
							| 110 |  | sseq1 |  |-  ( ( ( h ` suc i ) |` dom ( h ` i ) ) = ( h ` i ) -> ( ( ( h ` suc i ) |` dom ( h ` i ) ) C_ ( h ` suc i ) <-> ( h ` i ) C_ ( h ` suc i ) ) ) | 
						
							| 111 | 109 110 | mpbii |  |-  ( ( ( h ` suc i ) |` dom ( h ` i ) ) = ( h ` i ) -> ( h ` i ) C_ ( h ` suc i ) ) | 
						
							| 112 |  | elsuci |  |-  ( j e. suc i -> ( j e. i \/ j = i ) ) | 
						
							| 113 |  | pm2.27 |  |-  ( j e. i -> ( ( j e. i -> ( h ` j ) C_ ( h ` i ) ) -> ( h ` j ) C_ ( h ` i ) ) ) | 
						
							| 114 |  | sstr2 |  |-  ( ( h ` j ) C_ ( h ` i ) -> ( ( h ` i ) C_ ( h ` suc i ) -> ( h ` j ) C_ ( h ` suc i ) ) ) | 
						
							| 115 | 113 114 | syl6 |  |-  ( j e. i -> ( ( j e. i -> ( h ` j ) C_ ( h ` i ) ) -> ( ( h ` i ) C_ ( h ` suc i ) -> ( h ` j ) C_ ( h ` suc i ) ) ) ) | 
						
							| 116 |  | fveq2 |  |-  ( j = i -> ( h ` j ) = ( h ` i ) ) | 
						
							| 117 | 116 | sseq1d |  |-  ( j = i -> ( ( h ` j ) C_ ( h ` suc i ) <-> ( h ` i ) C_ ( h ` suc i ) ) ) | 
						
							| 118 | 117 | biimprd |  |-  ( j = i -> ( ( h ` i ) C_ ( h ` suc i ) -> ( h ` j ) C_ ( h ` suc i ) ) ) | 
						
							| 119 | 118 | a1d |  |-  ( j = i -> ( ( j e. i -> ( h ` j ) C_ ( h ` i ) ) -> ( ( h ` i ) C_ ( h ` suc i ) -> ( h ` j ) C_ ( h ` suc i ) ) ) ) | 
						
							| 120 | 115 119 | jaoi |  |-  ( ( j e. i \/ j = i ) -> ( ( j e. i -> ( h ` j ) C_ ( h ` i ) ) -> ( ( h ` i ) C_ ( h ` suc i ) -> ( h ` j ) C_ ( h ` suc i ) ) ) ) | 
						
							| 121 | 112 120 | syl |  |-  ( j e. suc i -> ( ( j e. i -> ( h ` j ) C_ ( h ` i ) ) -> ( ( h ` i ) C_ ( h ` suc i ) -> ( h ` j ) C_ ( h ` suc i ) ) ) ) | 
						
							| 122 | 121 | com13 |  |-  ( ( h ` i ) C_ ( h ` suc i ) -> ( ( j e. i -> ( h ` j ) C_ ( h ` i ) ) -> ( j e. suc i -> ( h ` j ) C_ ( h ` suc i ) ) ) ) | 
						
							| 123 | 108 111 122 | 3syl |  |-  ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> ( ( j e. i -> ( h ` j ) C_ ( h ` i ) ) -> ( j e. suc i -> ( h ` j ) C_ ( h ` suc i ) ) ) ) | 
						
							| 124 | 107 123 | anim12d |  |-  ( ( ( h ` i ) e. S /\ ( h ` suc i ) e. ( G ` ( h ` i ) ) ) -> ( ( i e. dom ( h ` i ) /\ ( j e. i -> ( h ` j ) C_ ( h ` i ) ) ) -> ( suc i e. dom ( h ` suc i ) /\ ( j e. suc i -> ( h ` j ) C_ ( h ` suc i ) ) ) ) ) | 
						
							| 125 | 63 69 124 | syl2anc |  |-  ( ( i e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( ( i e. dom ( h ` i ) /\ ( j e. i -> ( h ` j ) C_ ( h ` i ) ) ) -> ( suc i e. dom ( h ` suc i ) /\ ( j e. suc i -> ( h ` j ) C_ ( h ` suc i ) ) ) ) ) | 
						
							| 126 | 125 | ex |  |-  ( i e. _om -> ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( i e. dom ( h ` i ) /\ ( j e. i -> ( h ` j ) C_ ( h ` i ) ) ) -> ( suc i e. dom ( h ` suc i ) /\ ( j e. suc i -> ( h ` j ) C_ ( h ` suc i ) ) ) ) ) ) | 
						
							| 127 | 11 19 27 60 126 | finds2 |  |-  ( m e. _om -> ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( m e. dom ( h ` m ) /\ ( j e. m -> ( h ` j ) C_ ( h ` m ) ) ) ) ) | 
						
							| 128 | 127 | imp |  |-  ( ( m e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( m e. dom ( h ` m ) /\ ( j e. m -> ( h ` j ) C_ ( h ` m ) ) ) ) | 
						
							| 129 | 128 | simprd |  |-  ( ( m e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( j e. m -> ( h ` j ) C_ ( h ` m ) ) ) | 
						
							| 130 | 129 | expcom |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( m e. _om -> ( j e. m -> ( h ` j ) C_ ( h ` m ) ) ) ) | 
						
							| 131 | 130 | ralrimdv |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( m e. _om -> A. j e. m ( h ` j ) C_ ( h ` m ) ) ) | 
						
							| 132 | 131 | ralrimiv |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) ) | 
						
							| 133 |  | frn |  |-  ( h : _om --> S -> ran h C_ S ) | 
						
							| 134 |  | ffun |  |-  ( s : suc n --> A -> Fun s ) | 
						
							| 135 | 134 | 3ad2ant1 |  |-  ( ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> Fun s ) | 
						
							| 136 | 135 | rexlimivw |  |-  ( E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> Fun s ) | 
						
							| 137 | 136 | ss2abi |  |-  { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } C_ { s | Fun s } | 
						
							| 138 | 2 137 | eqsstri |  |-  S C_ { s | Fun s } | 
						
							| 139 | 133 138 | sstrdi |  |-  ( h : _om --> S -> ran h C_ { s | Fun s } ) | 
						
							| 140 | 139 | sseld |  |-  ( h : _om --> S -> ( u e. ran h -> u e. { s | Fun s } ) ) | 
						
							| 141 |  | vex |  |-  u e. _V | 
						
							| 142 |  | funeq |  |-  ( s = u -> ( Fun s <-> Fun u ) ) | 
						
							| 143 | 141 142 | elab |  |-  ( u e. { s | Fun s } <-> Fun u ) | 
						
							| 144 | 140 143 | imbitrdi |  |-  ( h : _om --> S -> ( u e. ran h -> Fun u ) ) | 
						
							| 145 | 144 | adantr |  |-  ( ( h : _om --> S /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) ) -> ( u e. ran h -> Fun u ) ) | 
						
							| 146 |  | ffn |  |-  ( h : _om --> S -> h Fn _om ) | 
						
							| 147 |  | fvelrnb |  |-  ( h Fn _om -> ( v e. ran h <-> E. b e. _om ( h ` b ) = v ) ) | 
						
							| 148 |  | fvelrnb |  |-  ( h Fn _om -> ( u e. ran h <-> E. a e. _om ( h ` a ) = u ) ) | 
						
							| 149 |  | nnord |  |-  ( a e. _om -> Ord a ) | 
						
							| 150 |  | nnord |  |-  ( b e. _om -> Ord b ) | 
						
							| 151 | 149 150 | anim12i |  |-  ( ( a e. _om /\ b e. _om ) -> ( Ord a /\ Ord b ) ) | 
						
							| 152 |  | ordtri3or |  |-  ( ( Ord a /\ Ord b ) -> ( a e. b \/ a = b \/ b e. a ) ) | 
						
							| 153 |  | fveq2 |  |-  ( m = b -> ( h ` m ) = ( h ` b ) ) | 
						
							| 154 | 153 | sseq2d |  |-  ( m = b -> ( ( h ` j ) C_ ( h ` m ) <-> ( h ` j ) C_ ( h ` b ) ) ) | 
						
							| 155 | 154 | raleqbi1dv |  |-  ( m = b -> ( A. j e. m ( h ` j ) C_ ( h ` m ) <-> A. j e. b ( h ` j ) C_ ( h ` b ) ) ) | 
						
							| 156 | 155 | rspcv |  |-  ( b e. _om -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> A. j e. b ( h ` j ) C_ ( h ` b ) ) ) | 
						
							| 157 |  | fveq2 |  |-  ( j = a -> ( h ` j ) = ( h ` a ) ) | 
						
							| 158 | 157 | sseq1d |  |-  ( j = a -> ( ( h ` j ) C_ ( h ` b ) <-> ( h ` a ) C_ ( h ` b ) ) ) | 
						
							| 159 | 158 | rspccv |  |-  ( A. j e. b ( h ` j ) C_ ( h ` b ) -> ( a e. b -> ( h ` a ) C_ ( h ` b ) ) ) | 
						
							| 160 | 156 159 | syl6 |  |-  ( b e. _om -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( a e. b -> ( h ` a ) C_ ( h ` b ) ) ) ) | 
						
							| 161 | 160 | adantl |  |-  ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( a e. b -> ( h ` a ) C_ ( h ` b ) ) ) ) | 
						
							| 162 | 161 | 3imp |  |-  ( ( ( a e. _om /\ b e. _om ) /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) /\ a e. b ) -> ( h ` a ) C_ ( h ` b ) ) | 
						
							| 163 | 162 | orcd |  |-  ( ( ( a e. _om /\ b e. _om ) /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) /\ a e. b ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) | 
						
							| 164 | 163 | 3exp |  |-  ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( a e. b -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) ) ) | 
						
							| 165 | 164 | com3r |  |-  ( a e. b -> ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) ) ) | 
						
							| 166 |  | fveq2 |  |-  ( a = b -> ( h ` a ) = ( h ` b ) ) | 
						
							| 167 |  | eqimss |  |-  ( ( h ` a ) = ( h ` b ) -> ( h ` a ) C_ ( h ` b ) ) | 
						
							| 168 | 167 | orcd |  |-  ( ( h ` a ) = ( h ` b ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) | 
						
							| 169 | 166 168 | syl |  |-  ( a = b -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) | 
						
							| 170 | 169 | 2a1d |  |-  ( a = b -> ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) ) ) | 
						
							| 171 |  | fveq2 |  |-  ( m = a -> ( h ` m ) = ( h ` a ) ) | 
						
							| 172 | 171 | sseq2d |  |-  ( m = a -> ( ( h ` j ) C_ ( h ` m ) <-> ( h ` j ) C_ ( h ` a ) ) ) | 
						
							| 173 | 172 | raleqbi1dv |  |-  ( m = a -> ( A. j e. m ( h ` j ) C_ ( h ` m ) <-> A. j e. a ( h ` j ) C_ ( h ` a ) ) ) | 
						
							| 174 | 173 | rspcv |  |-  ( a e. _om -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> A. j e. a ( h ` j ) C_ ( h ` a ) ) ) | 
						
							| 175 |  | fveq2 |  |-  ( j = b -> ( h ` j ) = ( h ` b ) ) | 
						
							| 176 | 175 | sseq1d |  |-  ( j = b -> ( ( h ` j ) C_ ( h ` a ) <-> ( h ` b ) C_ ( h ` a ) ) ) | 
						
							| 177 | 176 | rspccv |  |-  ( A. j e. a ( h ` j ) C_ ( h ` a ) -> ( b e. a -> ( h ` b ) C_ ( h ` a ) ) ) | 
						
							| 178 | 174 177 | syl6 |  |-  ( a e. _om -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( b e. a -> ( h ` b ) C_ ( h ` a ) ) ) ) | 
						
							| 179 | 178 | adantr |  |-  ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( b e. a -> ( h ` b ) C_ ( h ` a ) ) ) ) | 
						
							| 180 | 179 | 3imp |  |-  ( ( ( a e. _om /\ b e. _om ) /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) /\ b e. a ) -> ( h ` b ) C_ ( h ` a ) ) | 
						
							| 181 | 180 | olcd |  |-  ( ( ( a e. _om /\ b e. _om ) /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) /\ b e. a ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) | 
						
							| 182 | 181 | 3exp |  |-  ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( b e. a -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) ) ) | 
						
							| 183 | 182 | com3r |  |-  ( b e. a -> ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) ) ) | 
						
							| 184 | 165 170 183 | 3jaoi |  |-  ( ( a e. b \/ a = b \/ b e. a ) -> ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) ) ) | 
						
							| 185 | 152 184 | syl |  |-  ( ( Ord a /\ Ord b ) -> ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) ) ) | 
						
							| 186 | 151 185 | mpcom |  |-  ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) ) ) | 
						
							| 187 |  | sseq12 |  |-  ( ( ( h ` a ) = u /\ ( h ` b ) = v ) -> ( ( h ` a ) C_ ( h ` b ) <-> u C_ v ) ) | 
						
							| 188 |  | sseq12 |  |-  ( ( ( h ` b ) = v /\ ( h ` a ) = u ) -> ( ( h ` b ) C_ ( h ` a ) <-> v C_ u ) ) | 
						
							| 189 | 188 | ancoms |  |-  ( ( ( h ` a ) = u /\ ( h ` b ) = v ) -> ( ( h ` b ) C_ ( h ` a ) <-> v C_ u ) ) | 
						
							| 190 | 187 189 | orbi12d |  |-  ( ( ( h ` a ) = u /\ ( h ` b ) = v ) -> ( ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) <-> ( u C_ v \/ v C_ u ) ) ) | 
						
							| 191 | 190 | biimpcd |  |-  ( ( ( h ` a ) C_ ( h ` b ) \/ ( h ` b ) C_ ( h ` a ) ) -> ( ( ( h ` a ) = u /\ ( h ` b ) = v ) -> ( u C_ v \/ v C_ u ) ) ) | 
						
							| 192 | 186 191 | syl6 |  |-  ( ( a e. _om /\ b e. _om ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( ( ( h ` a ) = u /\ ( h ` b ) = v ) -> ( u C_ v \/ v C_ u ) ) ) ) | 
						
							| 193 | 192 | com23 |  |-  ( ( a e. _om /\ b e. _om ) -> ( ( ( h ` a ) = u /\ ( h ` b ) = v ) -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u C_ v \/ v C_ u ) ) ) ) | 
						
							| 194 | 193 | exp4b |  |-  ( a e. _om -> ( b e. _om -> ( ( h ` a ) = u -> ( ( h ` b ) = v -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u C_ v \/ v C_ u ) ) ) ) ) ) | 
						
							| 195 | 194 | com23 |  |-  ( a e. _om -> ( ( h ` a ) = u -> ( b e. _om -> ( ( h ` b ) = v -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u C_ v \/ v C_ u ) ) ) ) ) ) | 
						
							| 196 | 195 | rexlimiv |  |-  ( E. a e. _om ( h ` a ) = u -> ( b e. _om -> ( ( h ` b ) = v -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u C_ v \/ v C_ u ) ) ) ) ) | 
						
							| 197 | 196 | rexlimdv |  |-  ( E. a e. _om ( h ` a ) = u -> ( E. b e. _om ( h ` b ) = v -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u C_ v \/ v C_ u ) ) ) ) | 
						
							| 198 | 148 197 | biimtrdi |  |-  ( h Fn _om -> ( u e. ran h -> ( E. b e. _om ( h ` b ) = v -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u C_ v \/ v C_ u ) ) ) ) ) | 
						
							| 199 | 198 | com23 |  |-  ( h Fn _om -> ( E. b e. _om ( h ` b ) = v -> ( u e. ran h -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u C_ v \/ v C_ u ) ) ) ) ) | 
						
							| 200 | 147 199 | sylbid |  |-  ( h Fn _om -> ( v e. ran h -> ( u e. ran h -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u C_ v \/ v C_ u ) ) ) ) ) | 
						
							| 201 | 200 | com24 |  |-  ( h Fn _om -> ( A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) -> ( u e. ran h -> ( v e. ran h -> ( u C_ v \/ v C_ u ) ) ) ) ) | 
						
							| 202 | 201 | imp |  |-  ( ( h Fn _om /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) ) -> ( u e. ran h -> ( v e. ran h -> ( u C_ v \/ v C_ u ) ) ) ) | 
						
							| 203 | 202 | ralrimdv |  |-  ( ( h Fn _om /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) ) -> ( u e. ran h -> A. v e. ran h ( u C_ v \/ v C_ u ) ) ) | 
						
							| 204 | 146 203 | sylan |  |-  ( ( h : _om --> S /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) ) -> ( u e. ran h -> A. v e. ran h ( u C_ v \/ v C_ u ) ) ) | 
						
							| 205 | 145 204 | jcad |  |-  ( ( h : _om --> S /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) ) -> ( u e. ran h -> ( Fun u /\ A. v e. ran h ( u C_ v \/ v C_ u ) ) ) ) | 
						
							| 206 | 205 | ralrimiv |  |-  ( ( h : _om --> S /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) ) -> A. u e. ran h ( Fun u /\ A. v e. ran h ( u C_ v \/ v C_ u ) ) ) | 
						
							| 207 |  | fununi |  |-  ( A. u e. ran h ( Fun u /\ A. v e. ran h ( u C_ v \/ v C_ u ) ) -> Fun U. ran h ) | 
						
							| 208 | 206 207 | syl |  |-  ( ( h : _om --> S /\ A. m e. _om A. j e. m ( h ` j ) C_ ( h ` m ) ) -> Fun U. ran h ) | 
						
							| 209 | 132 208 | syldan |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> Fun U. ran h ) | 
						
							| 210 |  | vex |  |-  m e. _V | 
						
							| 211 | 210 | eldm2 |  |-  ( m e. dom U. ran h <-> E. u <. m , u >. e. U. ran h ) | 
						
							| 212 |  | eluni2 |  |-  ( <. m , u >. e. U. ran h <-> E. v e. ran h <. m , u >. e. v ) | 
						
							| 213 | 210 141 | opeldm |  |-  ( <. m , u >. e. v -> m e. dom v ) | 
						
							| 214 | 213 | a1i |  |-  ( h : _om --> S -> ( <. m , u >. e. v -> m e. dom v ) ) | 
						
							| 215 | 133 46 | sstrdi |  |-  ( h : _om --> S -> ran h C_ { s | ( (/) e. dom s /\ dom s e. _om ) } ) | 
						
							| 216 |  | ssel |  |-  ( ran h C_ { s | ( (/) e. dom s /\ dom s e. _om ) } -> ( v e. ran h -> v e. { s | ( (/) e. dom s /\ dom s e. _om ) } ) ) | 
						
							| 217 |  | vex |  |-  v e. _V | 
						
							| 218 |  | dmeq |  |-  ( s = v -> dom s = dom v ) | 
						
							| 219 | 218 | eleq2d |  |-  ( s = v -> ( (/) e. dom s <-> (/) e. dom v ) ) | 
						
							| 220 | 218 | eleq1d |  |-  ( s = v -> ( dom s e. _om <-> dom v e. _om ) ) | 
						
							| 221 | 219 220 | anbi12d |  |-  ( s = v -> ( ( (/) e. dom s /\ dom s e. _om ) <-> ( (/) e. dom v /\ dom v e. _om ) ) ) | 
						
							| 222 | 217 221 | elab |  |-  ( v e. { s | ( (/) e. dom s /\ dom s e. _om ) } <-> ( (/) e. dom v /\ dom v e. _om ) ) | 
						
							| 223 | 222 | simprbi |  |-  ( v e. { s | ( (/) e. dom s /\ dom s e. _om ) } -> dom v e. _om ) | 
						
							| 224 | 216 223 | syl6 |  |-  ( ran h C_ { s | ( (/) e. dom s /\ dom s e. _om ) } -> ( v e. ran h -> dom v e. _om ) ) | 
						
							| 225 | 215 224 | syl |  |-  ( h : _om --> S -> ( v e. ran h -> dom v e. _om ) ) | 
						
							| 226 | 214 225 | anim12d |  |-  ( h : _om --> S -> ( ( <. m , u >. e. v /\ v e. ran h ) -> ( m e. dom v /\ dom v e. _om ) ) ) | 
						
							| 227 |  | elnn |  |-  ( ( m e. dom v /\ dom v e. _om ) -> m e. _om ) | 
						
							| 228 | 226 227 | syl6 |  |-  ( h : _om --> S -> ( ( <. m , u >. e. v /\ v e. ran h ) -> m e. _om ) ) | 
						
							| 229 | 228 | expcomd |  |-  ( h : _om --> S -> ( v e. ran h -> ( <. m , u >. e. v -> m e. _om ) ) ) | 
						
							| 230 | 229 | rexlimdv |  |-  ( h : _om --> S -> ( E. v e. ran h <. m , u >. e. v -> m e. _om ) ) | 
						
							| 231 | 212 230 | biimtrid |  |-  ( h : _om --> S -> ( <. m , u >. e. U. ran h -> m e. _om ) ) | 
						
							| 232 | 231 | exlimdv |  |-  ( h : _om --> S -> ( E. u <. m , u >. e. U. ran h -> m e. _om ) ) | 
						
							| 233 | 211 232 | biimtrid |  |-  ( h : _om --> S -> ( m e. dom U. ran h -> m e. _om ) ) | 
						
							| 234 | 233 | adantr |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( m e. dom U. ran h -> m e. _om ) ) | 
						
							| 235 |  | id |  |-  ( m e. _om -> m e. _om ) | 
						
							| 236 |  | fnfvelrn |  |-  ( ( h Fn _om /\ m e. _om ) -> ( h ` m ) e. ran h ) | 
						
							| 237 | 146 235 236 | syl2anr |  |-  ( ( m e. _om /\ h : _om --> S ) -> ( h ` m ) e. ran h ) | 
						
							| 238 | 237 | adantrr |  |-  ( ( m e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( h ` m ) e. ran h ) | 
						
							| 239 | 128 | simpld |  |-  ( ( m e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> m e. dom ( h ` m ) ) | 
						
							| 240 |  | dmeq |  |-  ( u = ( h ` m ) -> dom u = dom ( h ` m ) ) | 
						
							| 241 | 240 | eliuni |  |-  ( ( ( h ` m ) e. ran h /\ m e. dom ( h ` m ) ) -> m e. U_ u e. ran h dom u ) | 
						
							| 242 | 238 239 241 | syl2anc |  |-  ( ( m e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> m e. U_ u e. ran h dom u ) | 
						
							| 243 |  | dmuni |  |-  dom U. ran h = U_ u e. ran h dom u | 
						
							| 244 | 242 243 | eleqtrrdi |  |-  ( ( m e. _om /\ ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> m e. dom U. ran h ) | 
						
							| 245 | 244 | expcom |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( m e. _om -> m e. dom U. ran h ) ) | 
						
							| 246 | 234 245 | impbid |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( m e. dom U. ran h <-> m e. _om ) ) | 
						
							| 247 | 246 | eqrdv |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> dom U. ran h = _om ) | 
						
							| 248 |  | rnuni |  |-  ran U. ran h = U_ s e. ran h ran s | 
						
							| 249 |  | frn |  |-  ( s : suc n --> A -> ran s C_ A ) | 
						
							| 250 | 249 | 3ad2ant1 |  |-  ( ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ran s C_ A ) | 
						
							| 251 | 250 | rexlimivw |  |-  ( E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ran s C_ A ) | 
						
							| 252 | 251 | ss2abi |  |-  { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } C_ { s | ran s C_ A } | 
						
							| 253 | 2 252 | eqsstri |  |-  S C_ { s | ran s C_ A } | 
						
							| 254 | 133 253 | sstrdi |  |-  ( h : _om --> S -> ran h C_ { s | ran s C_ A } ) | 
						
							| 255 |  | ssel |  |-  ( ran h C_ { s | ran s C_ A } -> ( s e. ran h -> s e. { s | ran s C_ A } ) ) | 
						
							| 256 |  | abid |  |-  ( s e. { s | ran s C_ A } <-> ran s C_ A ) | 
						
							| 257 | 255 256 | imbitrdi |  |-  ( ran h C_ { s | ran s C_ A } -> ( s e. ran h -> ran s C_ A ) ) | 
						
							| 258 | 254 257 | syl |  |-  ( h : _om --> S -> ( s e. ran h -> ran s C_ A ) ) | 
						
							| 259 | 258 | ralrimiv |  |-  ( h : _om --> S -> A. s e. ran h ran s C_ A ) | 
						
							| 260 |  | iunss |  |-  ( U_ s e. ran h ran s C_ A <-> A. s e. ran h ran s C_ A ) | 
						
							| 261 | 259 260 | sylibr |  |-  ( h : _om --> S -> U_ s e. ran h ran s C_ A ) | 
						
							| 262 | 248 261 | eqsstrid |  |-  ( h : _om --> S -> ran U. ran h C_ A ) | 
						
							| 263 | 262 | adantr |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ran U. ran h C_ A ) | 
						
							| 264 |  | df-fn |  |-  ( U. ran h Fn _om <-> ( Fun U. ran h /\ dom U. ran h = _om ) ) | 
						
							| 265 |  | df-f |  |-  ( U. ran h : _om --> A <-> ( U. ran h Fn _om /\ ran U. ran h C_ A ) ) | 
						
							| 266 | 265 | biimpri |  |-  ( ( U. ran h Fn _om /\ ran U. ran h C_ A ) -> U. ran h : _om --> A ) | 
						
							| 267 | 264 266 | sylanbr |  |-  ( ( ( Fun U. ran h /\ dom U. ran h = _om ) /\ ran U. ran h C_ A ) -> U. ran h : _om --> A ) | 
						
							| 268 | 209 247 263 267 | syl21anc |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> U. ran h : _om --> A ) | 
						
							| 269 |  | fnfvelrn |  |-  ( ( h Fn _om /\ (/) e. _om ) -> ( h ` (/) ) e. ran h ) | 
						
							| 270 | 146 28 269 | sylancl |  |-  ( h : _om --> S -> ( h ` (/) ) e. ran h ) | 
						
							| 271 | 270 | adantr |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( h ` (/) ) e. ran h ) | 
						
							| 272 |  | elssuni |  |-  ( ( h ` (/) ) e. ran h -> ( h ` (/) ) C_ U. ran h ) | 
						
							| 273 | 271 272 | syl |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( h ` (/) ) C_ U. ran h ) | 
						
							| 274 | 56 | adantr |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> (/) e. dom ( h ` (/) ) ) | 
						
							| 275 |  | funssfv |  |-  ( ( Fun U. ran h /\ ( h ` (/) ) C_ U. ran h /\ (/) e. dom ( h ` (/) ) ) -> ( U. ran h ` (/) ) = ( ( h ` (/) ) ` (/) ) ) | 
						
							| 276 | 209 273 274 275 | syl3anc |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( U. ran h ` (/) ) = ( ( h ` (/) ) ` (/) ) ) | 
						
							| 277 |  | simp2 |  |-  ( ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ( s ` (/) ) = C ) | 
						
							| 278 | 277 | rexlimivw |  |-  ( E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ( s ` (/) ) = C ) | 
						
							| 279 | 278 | ss2abi |  |-  { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } C_ { s | ( s ` (/) ) = C } | 
						
							| 280 | 2 279 | eqsstri |  |-  S C_ { s | ( s ` (/) ) = C } | 
						
							| 281 | 133 280 | sstrdi |  |-  ( h : _om --> S -> ran h C_ { s | ( s ` (/) ) = C } ) | 
						
							| 282 |  | ssel |  |-  ( ran h C_ { s | ( s ` (/) ) = C } -> ( ( h ` (/) ) e. ran h -> ( h ` (/) ) e. { s | ( s ` (/) ) = C } ) ) | 
						
							| 283 |  | fveq1 |  |-  ( s = ( h ` (/) ) -> ( s ` (/) ) = ( ( h ` (/) ) ` (/) ) ) | 
						
							| 284 | 283 | eqeq1d |  |-  ( s = ( h ` (/) ) -> ( ( s ` (/) ) = C <-> ( ( h ` (/) ) ` (/) ) = C ) ) | 
						
							| 285 | 48 284 | elab |  |-  ( ( h ` (/) ) e. { s | ( s ` (/) ) = C } <-> ( ( h ` (/) ) ` (/) ) = C ) | 
						
							| 286 | 282 285 | imbitrdi |  |-  ( ran h C_ { s | ( s ` (/) ) = C } -> ( ( h ` (/) ) e. ran h -> ( ( h ` (/) ) ` (/) ) = C ) ) | 
						
							| 287 | 281 286 | syl |  |-  ( h : _om --> S -> ( ( h ` (/) ) e. ran h -> ( ( h ` (/) ) ` (/) ) = C ) ) | 
						
							| 288 | 287 | adantr |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( h ` (/) ) e. ran h -> ( ( h ` (/) ) ` (/) ) = C ) ) | 
						
							| 289 | 271 288 | mpd |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( h ` (/) ) ` (/) ) = C ) | 
						
							| 290 | 276 289 | eqtrd |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( U. ran h ` (/) ) = C ) | 
						
							| 291 |  | nfv |  |-  F/ k h : _om --> S | 
						
							| 292 |  | nfra1 |  |-  F/ k A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) | 
						
							| 293 | 291 292 | nfan |  |-  F/ k ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) | 
						
							| 294 | 133 | ad2antrr |  |-  ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ran h C_ S ) | 
						
							| 295 |  | peano2 |  |-  ( k e. _om -> suc k e. _om ) | 
						
							| 296 |  | fnfvelrn |  |-  ( ( h Fn _om /\ suc k e. _om ) -> ( h ` suc k ) e. ran h ) | 
						
							| 297 | 146 295 296 | syl2an |  |-  ( ( h : _om --> S /\ k e. _om ) -> ( h ` suc k ) e. ran h ) | 
						
							| 298 | 297 | adantlr |  |-  ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( h ` suc k ) e. ran h ) | 
						
							| 299 | 239 | expcom |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( m e. _om -> m e. dom ( h ` m ) ) ) | 
						
							| 300 | 299 | ralrimiv |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> A. m e. _om m e. dom ( h ` m ) ) | 
						
							| 301 |  | id |  |-  ( m = suc k -> m = suc k ) | 
						
							| 302 |  | fveq2 |  |-  ( m = suc k -> ( h ` m ) = ( h ` suc k ) ) | 
						
							| 303 | 302 | dmeqd |  |-  ( m = suc k -> dom ( h ` m ) = dom ( h ` suc k ) ) | 
						
							| 304 | 301 303 | eleq12d |  |-  ( m = suc k -> ( m e. dom ( h ` m ) <-> suc k e. dom ( h ` suc k ) ) ) | 
						
							| 305 | 304 | rspcv |  |-  ( suc k e. _om -> ( A. m e. _om m e. dom ( h ` m ) -> suc k e. dom ( h ` suc k ) ) ) | 
						
							| 306 | 295 305 | syl |  |-  ( k e. _om -> ( A. m e. _om m e. dom ( h ` m ) -> suc k e. dom ( h ` suc k ) ) ) | 
						
							| 307 | 300 306 | mpan9 |  |-  ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> suc k e. dom ( h ` suc k ) ) | 
						
							| 308 |  | eleq2 |  |-  ( dom s = suc n -> ( suc k e. dom s <-> suc k e. suc n ) ) | 
						
							| 309 | 308 | biimpa |  |-  ( ( dom s = suc n /\ suc k e. dom s ) -> suc k e. suc n ) | 
						
							| 310 | 31 309 | sylan |  |-  ( ( s : suc n --> A /\ suc k e. dom s ) -> suc k e. suc n ) | 
						
							| 311 |  | ordsucelsuc |  |-  ( Ord n -> ( k e. n <-> suc k e. suc n ) ) | 
						
							| 312 | 32 311 | syl |  |-  ( n e. _om -> ( k e. n <-> suc k e. suc n ) ) | 
						
							| 313 | 312 | biimprd |  |-  ( n e. _om -> ( suc k e. suc n -> k e. n ) ) | 
						
							| 314 |  | rsp |  |-  ( A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) -> ( k e. n -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) | 
						
							| 315 | 313 314 | syl9r |  |-  ( A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) -> ( n e. _om -> ( suc k e. suc n -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) ) | 
						
							| 316 | 315 | com13 |  |-  ( suc k e. suc n -> ( n e. _om -> ( A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) ) | 
						
							| 317 | 310 316 | syl |  |-  ( ( s : suc n --> A /\ suc k e. dom s ) -> ( n e. _om -> ( A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) ) | 
						
							| 318 | 317 | ex |  |-  ( s : suc n --> A -> ( suc k e. dom s -> ( n e. _om -> ( A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) ) ) | 
						
							| 319 | 318 | com24 |  |-  ( s : suc n --> A -> ( A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) -> ( n e. _om -> ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) ) ) | 
						
							| 320 | 319 | imp |  |-  ( ( s : suc n --> A /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ( n e. _om -> ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) ) | 
						
							| 321 | 320 | 3adant2 |  |-  ( ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ( n e. _om -> ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) ) | 
						
							| 322 | 321 | impcom |  |-  ( ( n e. _om /\ ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) -> ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) | 
						
							| 323 | 322 | rexlimiva |  |-  ( E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) -> ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) ) | 
						
							| 324 | 323 | ss2abi |  |-  { s | E. n e. _om ( s : suc n --> A /\ ( s ` (/) ) = C /\ A. k e. n ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } C_ { s | ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } | 
						
							| 325 | 2 324 | eqsstri |  |-  S C_ { s | ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } | 
						
							| 326 |  | sstr |  |-  ( ( ran h C_ S /\ S C_ { s | ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } ) -> ran h C_ { s | ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } ) | 
						
							| 327 | 325 326 | mpan2 |  |-  ( ran h C_ S -> ran h C_ { s | ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } ) | 
						
							| 328 | 327 | sseld |  |-  ( ran h C_ S -> ( ( h ` suc k ) e. ran h -> ( h ` suc k ) e. { s | ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } ) ) | 
						
							| 329 |  | fvex |  |-  ( h ` suc k ) e. _V | 
						
							| 330 |  | dmeq |  |-  ( s = ( h ` suc k ) -> dom s = dom ( h ` suc k ) ) | 
						
							| 331 | 330 | eleq2d |  |-  ( s = ( h ` suc k ) -> ( suc k e. dom s <-> suc k e. dom ( h ` suc k ) ) ) | 
						
							| 332 |  | fveq1 |  |-  ( s = ( h ` suc k ) -> ( s ` suc k ) = ( ( h ` suc k ) ` suc k ) ) | 
						
							| 333 |  | fveq1 |  |-  ( s = ( h ` suc k ) -> ( s ` k ) = ( ( h ` suc k ) ` k ) ) | 
						
							| 334 | 333 | fveq2d |  |-  ( s = ( h ` suc k ) -> ( F ` ( s ` k ) ) = ( F ` ( ( h ` suc k ) ` k ) ) ) | 
						
							| 335 | 332 334 | eleq12d |  |-  ( s = ( h ` suc k ) -> ( ( s ` suc k ) e. ( F ` ( s ` k ) ) <-> ( ( h ` suc k ) ` suc k ) e. ( F ` ( ( h ` suc k ) ` k ) ) ) ) | 
						
							| 336 | 331 335 | imbi12d |  |-  ( s = ( h ` suc k ) -> ( ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) <-> ( suc k e. dom ( h ` suc k ) -> ( ( h ` suc k ) ` suc k ) e. ( F ` ( ( h ` suc k ) ` k ) ) ) ) ) | 
						
							| 337 | 329 336 | elab |  |-  ( ( h ` suc k ) e. { s | ( suc k e. dom s -> ( s ` suc k ) e. ( F ` ( s ` k ) ) ) } <-> ( suc k e. dom ( h ` suc k ) -> ( ( h ` suc k ) ` suc k ) e. ( F ` ( ( h ` suc k ) ` k ) ) ) ) | 
						
							| 338 | 328 337 | imbitrdi |  |-  ( ran h C_ S -> ( ( h ` suc k ) e. ran h -> ( suc k e. dom ( h ` suc k ) -> ( ( h ` suc k ) ` suc k ) e. ( F ` ( ( h ` suc k ) ` k ) ) ) ) ) | 
						
							| 339 | 294 298 307 338 | syl3c |  |-  ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( ( h ` suc k ) ` suc k ) e. ( F ` ( ( h ` suc k ) ` k ) ) ) | 
						
							| 340 | 209 | adantr |  |-  ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> Fun U. ran h ) | 
						
							| 341 |  | elssuni |  |-  ( ( h ` suc k ) e. ran h -> ( h ` suc k ) C_ U. ran h ) | 
						
							| 342 | 297 341 | syl |  |-  ( ( h : _om --> S /\ k e. _om ) -> ( h ` suc k ) C_ U. ran h ) | 
						
							| 343 | 342 | adantlr |  |-  ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( h ` suc k ) C_ U. ran h ) | 
						
							| 344 |  | funssfv |  |-  ( ( Fun U. ran h /\ ( h ` suc k ) C_ U. ran h /\ suc k e. dom ( h ` suc k ) ) -> ( U. ran h ` suc k ) = ( ( h ` suc k ) ` suc k ) ) | 
						
							| 345 | 340 343 307 344 | syl3anc |  |-  ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( U. ran h ` suc k ) = ( ( h ` suc k ) ` suc k ) ) | 
						
							| 346 | 215 | sseld |  |-  ( h : _om --> S -> ( ( h ` suc k ) e. ran h -> ( h ` suc k ) e. { s | ( (/) e. dom s /\ dom s e. _om ) } ) ) | 
						
							| 347 | 330 | eleq2d |  |-  ( s = ( h ` suc k ) -> ( (/) e. dom s <-> (/) e. dom ( h ` suc k ) ) ) | 
						
							| 348 | 330 | eleq1d |  |-  ( s = ( h ` suc k ) -> ( dom s e. _om <-> dom ( h ` suc k ) e. _om ) ) | 
						
							| 349 | 347 348 | anbi12d |  |-  ( s = ( h ` suc k ) -> ( ( (/) e. dom s /\ dom s e. _om ) <-> ( (/) e. dom ( h ` suc k ) /\ dom ( h ` suc k ) e. _om ) ) ) | 
						
							| 350 | 329 349 | elab |  |-  ( ( h ` suc k ) e. { s | ( (/) e. dom s /\ dom s e. _om ) } <-> ( (/) e. dom ( h ` suc k ) /\ dom ( h ` suc k ) e. _om ) ) | 
						
							| 351 | 346 350 | imbitrdi |  |-  ( h : _om --> S -> ( ( h ` suc k ) e. ran h -> ( (/) e. dom ( h ` suc k ) /\ dom ( h ` suc k ) e. _om ) ) ) | 
						
							| 352 | 351 | adantr |  |-  ( ( h : _om --> S /\ k e. _om ) -> ( ( h ` suc k ) e. ran h -> ( (/) e. dom ( h ` suc k ) /\ dom ( h ` suc k ) e. _om ) ) ) | 
						
							| 353 | 297 352 | mpd |  |-  ( ( h : _om --> S /\ k e. _om ) -> ( (/) e. dom ( h ` suc k ) /\ dom ( h ` suc k ) e. _om ) ) | 
						
							| 354 | 353 | simprd |  |-  ( ( h : _om --> S /\ k e. _om ) -> dom ( h ` suc k ) e. _om ) | 
						
							| 355 |  | nnord |  |-  ( dom ( h ` suc k ) e. _om -> Ord dom ( h ` suc k ) ) | 
						
							| 356 |  | ordtr |  |-  ( Ord dom ( h ` suc k ) -> Tr dom ( h ` suc k ) ) | 
						
							| 357 |  | trsuc |  |-  ( ( Tr dom ( h ` suc k ) /\ suc k e. dom ( h ` suc k ) ) -> k e. dom ( h ` suc k ) ) | 
						
							| 358 | 357 | ex |  |-  ( Tr dom ( h ` suc k ) -> ( suc k e. dom ( h ` suc k ) -> k e. dom ( h ` suc k ) ) ) | 
						
							| 359 | 354 355 356 358 | 4syl |  |-  ( ( h : _om --> S /\ k e. _om ) -> ( suc k e. dom ( h ` suc k ) -> k e. dom ( h ` suc k ) ) ) | 
						
							| 360 | 359 | adantlr |  |-  ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( suc k e. dom ( h ` suc k ) -> k e. dom ( h ` suc k ) ) ) | 
						
							| 361 | 307 360 | mpd |  |-  ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> k e. dom ( h ` suc k ) ) | 
						
							| 362 |  | funssfv |  |-  ( ( Fun U. ran h /\ ( h ` suc k ) C_ U. ran h /\ k e. dom ( h ` suc k ) ) -> ( U. ran h ` k ) = ( ( h ` suc k ) ` k ) ) | 
						
							| 363 | 340 343 361 362 | syl3anc |  |-  ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( U. ran h ` k ) = ( ( h ` suc k ) ` k ) ) | 
						
							| 364 |  | simpl |  |-  ( ( ( U. ran h ` suc k ) = ( ( h ` suc k ) ` suc k ) /\ ( U. ran h ` k ) = ( ( h ` suc k ) ` k ) ) -> ( U. ran h ` suc k ) = ( ( h ` suc k ) ` suc k ) ) | 
						
							| 365 |  | simpr |  |-  ( ( ( U. ran h ` suc k ) = ( ( h ` suc k ) ` suc k ) /\ ( U. ran h ` k ) = ( ( h ` suc k ) ` k ) ) -> ( U. ran h ` k ) = ( ( h ` suc k ) ` k ) ) | 
						
							| 366 | 365 | fveq2d |  |-  ( ( ( U. ran h ` suc k ) = ( ( h ` suc k ) ` suc k ) /\ ( U. ran h ` k ) = ( ( h ` suc k ) ` k ) ) -> ( F ` ( U. ran h ` k ) ) = ( F ` ( ( h ` suc k ) ` k ) ) ) | 
						
							| 367 | 364 366 | eleq12d |  |-  ( ( ( U. ran h ` suc k ) = ( ( h ` suc k ) ` suc k ) /\ ( U. ran h ` k ) = ( ( h ` suc k ) ` k ) ) -> ( ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) <-> ( ( h ` suc k ) ` suc k ) e. ( F ` ( ( h ` suc k ) ` k ) ) ) ) | 
						
							| 368 | 345 363 367 | syl2anc |  |-  ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) <-> ( ( h ` suc k ) ` suc k ) e. ( F ` ( ( h ` suc k ) ` k ) ) ) ) | 
						
							| 369 | 339 368 | mpbird |  |-  ( ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) ) | 
						
							| 370 | 369 | ex |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( k e. _om -> ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) ) ) | 
						
							| 371 | 293 370 | ralrimi |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> A. k e. _om ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) ) | 
						
							| 372 |  | vex |  |-  h e. _V | 
						
							| 373 | 372 | rnex |  |-  ran h e. _V | 
						
							| 374 | 373 | uniex |  |-  U. ran h e. _V | 
						
							| 375 |  | feq1 |  |-  ( g = U. ran h -> ( g : _om --> A <-> U. ran h : _om --> A ) ) | 
						
							| 376 |  | fveq1 |  |-  ( g = U. ran h -> ( g ` (/) ) = ( U. ran h ` (/) ) ) | 
						
							| 377 | 376 | eqeq1d |  |-  ( g = U. ran h -> ( ( g ` (/) ) = C <-> ( U. ran h ` (/) ) = C ) ) | 
						
							| 378 |  | fveq1 |  |-  ( g = U. ran h -> ( g ` suc k ) = ( U. ran h ` suc k ) ) | 
						
							| 379 |  | fveq1 |  |-  ( g = U. ran h -> ( g ` k ) = ( U. ran h ` k ) ) | 
						
							| 380 | 379 | fveq2d |  |-  ( g = U. ran h -> ( F ` ( g ` k ) ) = ( F ` ( U. ran h ` k ) ) ) | 
						
							| 381 | 378 380 | eleq12d |  |-  ( g = U. ran h -> ( ( g ` suc k ) e. ( F ` ( g ` k ) ) <-> ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) ) ) | 
						
							| 382 | 381 | ralbidv |  |-  ( g = U. ran h -> ( A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) <-> A. k e. _om ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) ) ) | 
						
							| 383 | 375 377 382 | 3anbi123d |  |-  ( g = U. ran h -> ( ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) <-> ( U. ran h : _om --> A /\ ( U. ran h ` (/) ) = C /\ A. k e. _om ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) ) ) ) | 
						
							| 384 | 374 383 | spcev |  |-  ( ( U. ran h : _om --> A /\ ( U. ran h ` (/) ) = C /\ A. k e. _om ( U. ran h ` suc k ) e. ( F ` ( U. ran h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) | 
						
							| 385 | 268 290 371 384 | syl3anc |  |-  ( ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) | 
						
							| 386 | 385 | exlimiv |  |-  ( E. h ( h : _om --> S /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( F ` ( g ` k ) ) ) ) |