Metamath Proof Explorer


Theorem axdc4

Description: A more general version of axdc3 that allows the function F to vary with k . (Contributed by Mario Carneiro, 31-Jan-2013)

Ref Expression
Hypothesis axdc4.1
|- A e. _V
Assertion axdc4
|- ( ( C e. A /\ F : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) )

Proof

Step Hyp Ref Expression
1 axdc4.1
 |-  A e. _V
2 eqid
 |-  ( n e. _om , x e. A |-> ( { suc n } X. ( n F x ) ) ) = ( n e. _om , x e. A |-> ( { suc n } X. ( n F x ) ) )
3 1 2 axdc4lem
 |-  ( ( C e. A /\ F : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) )