| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axdc4lem.1 |  |-  A e. _V | 
						
							| 2 |  | axdc4lem.2 |  |-  G = ( n e. _om , x e. A |-> ( { suc n } X. ( n F x ) ) ) | 
						
							| 3 |  | peano1 |  |-  (/) e. _om | 
						
							| 4 |  | opelxpi |  |-  ( ( (/) e. _om /\ C e. A ) -> <. (/) , C >. e. ( _om X. A ) ) | 
						
							| 5 | 3 4 | mpan |  |-  ( C e. A -> <. (/) , C >. e. ( _om X. A ) ) | 
						
							| 6 |  | simp2 |  |-  ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> n e. _om ) | 
						
							| 7 |  | fovcdm |  |-  ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> ( n F x ) e. ( ~P A \ { (/) } ) ) | 
						
							| 8 |  | peano2 |  |-  ( n e. _om -> suc n e. _om ) | 
						
							| 9 | 8 | snssd |  |-  ( n e. _om -> { suc n } C_ _om ) | 
						
							| 10 |  | eldifi |  |-  ( ( n F x ) e. ( ~P A \ { (/) } ) -> ( n F x ) e. ~P A ) | 
						
							| 11 | 1 | elpw2 |  |-  ( ( n F x ) e. ~P A <-> ( n F x ) C_ A ) | 
						
							| 12 |  | xpss12 |  |-  ( ( { suc n } C_ _om /\ ( n F x ) C_ A ) -> ( { suc n } X. ( n F x ) ) C_ ( _om X. A ) ) | 
						
							| 13 | 11 12 | sylan2b |  |-  ( ( { suc n } C_ _om /\ ( n F x ) e. ~P A ) -> ( { suc n } X. ( n F x ) ) C_ ( _om X. A ) ) | 
						
							| 14 | 9 10 13 | syl2an |  |-  ( ( n e. _om /\ ( n F x ) e. ( ~P A \ { (/) } ) ) -> ( { suc n } X. ( n F x ) ) C_ ( _om X. A ) ) | 
						
							| 15 |  | snex |  |-  { suc n } e. _V | 
						
							| 16 |  | ovex |  |-  ( n F x ) e. _V | 
						
							| 17 | 15 16 | xpex |  |-  ( { suc n } X. ( n F x ) ) e. _V | 
						
							| 18 | 17 | elpw |  |-  ( ( { suc n } X. ( n F x ) ) e. ~P ( _om X. A ) <-> ( { suc n } X. ( n F x ) ) C_ ( _om X. A ) ) | 
						
							| 19 | 14 18 | sylibr |  |-  ( ( n e. _om /\ ( n F x ) e. ( ~P A \ { (/) } ) ) -> ( { suc n } X. ( n F x ) ) e. ~P ( _om X. A ) ) | 
						
							| 20 | 6 7 19 | syl2anc |  |-  ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> ( { suc n } X. ( n F x ) ) e. ~P ( _om X. A ) ) | 
						
							| 21 |  | eldifn |  |-  ( ( n F x ) e. ( ~P A \ { (/) } ) -> -. ( n F x ) e. { (/) } ) | 
						
							| 22 | 16 | elsn |  |-  ( ( n F x ) e. { (/) } <-> ( n F x ) = (/) ) | 
						
							| 23 | 22 | necon3bbii |  |-  ( -. ( n F x ) e. { (/) } <-> ( n F x ) =/= (/) ) | 
						
							| 24 |  | vex |  |-  n e. _V | 
						
							| 25 | 24 | sucex |  |-  suc n e. _V | 
						
							| 26 | 25 | snnz |  |-  { suc n } =/= (/) | 
						
							| 27 |  | xpnz |  |-  ( ( { suc n } =/= (/) /\ ( n F x ) =/= (/) ) <-> ( { suc n } X. ( n F x ) ) =/= (/) ) | 
						
							| 28 | 27 | biimpi |  |-  ( ( { suc n } =/= (/) /\ ( n F x ) =/= (/) ) -> ( { suc n } X. ( n F x ) ) =/= (/) ) | 
						
							| 29 | 26 28 | mpan |  |-  ( ( n F x ) =/= (/) -> ( { suc n } X. ( n F x ) ) =/= (/) ) | 
						
							| 30 | 23 29 | sylbi |  |-  ( -. ( n F x ) e. { (/) } -> ( { suc n } X. ( n F x ) ) =/= (/) ) | 
						
							| 31 | 17 | elsn |  |-  ( ( { suc n } X. ( n F x ) ) e. { (/) } <-> ( { suc n } X. ( n F x ) ) = (/) ) | 
						
							| 32 | 31 | necon3bbii |  |-  ( -. ( { suc n } X. ( n F x ) ) e. { (/) } <-> ( { suc n } X. ( n F x ) ) =/= (/) ) | 
						
							| 33 | 30 32 | sylibr |  |-  ( -. ( n F x ) e. { (/) } -> -. ( { suc n } X. ( n F x ) ) e. { (/) } ) | 
						
							| 34 | 7 21 33 | 3syl |  |-  ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> -. ( { suc n } X. ( n F x ) ) e. { (/) } ) | 
						
							| 35 | 20 34 | eldifd |  |-  ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> ( { suc n } X. ( n F x ) ) e. ( ~P ( _om X. A ) \ { (/) } ) ) | 
						
							| 36 | 35 | 3expib |  |-  ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) -> ( ( n e. _om /\ x e. A ) -> ( { suc n } X. ( n F x ) ) e. ( ~P ( _om X. A ) \ { (/) } ) ) ) | 
						
							| 37 | 36 | ralrimivv |  |-  ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) -> A. n e. _om A. x e. A ( { suc n } X. ( n F x ) ) e. ( ~P ( _om X. A ) \ { (/) } ) ) | 
						
							| 38 | 2 | fmpo |  |-  ( A. n e. _om A. x e. A ( { suc n } X. ( n F x ) ) e. ( ~P ( _om X. A ) \ { (/) } ) <-> G : ( _om X. A ) --> ( ~P ( _om X. A ) \ { (/) } ) ) | 
						
							| 39 | 37 38 | sylib |  |-  ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) -> G : ( _om X. A ) --> ( ~P ( _om X. A ) \ { (/) } ) ) | 
						
							| 40 |  | dcomex |  |-  _om e. _V | 
						
							| 41 | 40 1 | xpex |  |-  ( _om X. A ) e. _V | 
						
							| 42 | 41 | axdc3 |  |-  ( ( <. (/) , C >. e. ( _om X. A ) /\ G : ( _om X. A ) --> ( ~P ( _om X. A ) \ { (/) } ) ) -> E. h ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) | 
						
							| 43 | 5 39 42 | syl2an |  |-  ( ( C e. A /\ F : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> E. h ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) | 
						
							| 44 |  | 2ndcof |  |-  ( h : _om --> ( _om X. A ) -> ( 2nd o. h ) : _om --> A ) | 
						
							| 45 | 44 | 3ad2ant1 |  |-  ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( 2nd o. h ) : _om --> A ) | 
						
							| 46 | 45 | adantl |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( 2nd o. h ) : _om --> A ) | 
						
							| 47 |  | fex2 |  |-  ( ( ( 2nd o. h ) : _om --> A /\ _om e. _V /\ A e. _V ) -> ( 2nd o. h ) e. _V ) | 
						
							| 48 | 40 1 47 | mp3an23 |  |-  ( ( 2nd o. h ) : _om --> A -> ( 2nd o. h ) e. _V ) | 
						
							| 49 | 46 48 | syl |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( 2nd o. h ) e. _V ) | 
						
							| 50 |  | fvco3 |  |-  ( ( h : _om --> ( _om X. A ) /\ (/) e. _om ) -> ( ( 2nd o. h ) ` (/) ) = ( 2nd ` ( h ` (/) ) ) ) | 
						
							| 51 | 3 50 | mpan2 |  |-  ( h : _om --> ( _om X. A ) -> ( ( 2nd o. h ) ` (/) ) = ( 2nd ` ( h ` (/) ) ) ) | 
						
							| 52 | 51 | 3ad2ant1 |  |-  ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( 2nd o. h ) ` (/) ) = ( 2nd ` ( h ` (/) ) ) ) | 
						
							| 53 |  | fveq2 |  |-  ( ( h ` (/) ) = <. (/) , C >. -> ( 2nd ` ( h ` (/) ) ) = ( 2nd ` <. (/) , C >. ) ) | 
						
							| 54 | 53 | 3ad2ant2 |  |-  ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( 2nd ` ( h ` (/) ) ) = ( 2nd ` <. (/) , C >. ) ) | 
						
							| 55 | 52 54 | eqtrd |  |-  ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( 2nd o. h ) ` (/) ) = ( 2nd ` <. (/) , C >. ) ) | 
						
							| 56 |  | op2ndg |  |-  ( ( (/) e. _om /\ C e. A ) -> ( 2nd ` <. (/) , C >. ) = C ) | 
						
							| 57 | 3 56 | mpan |  |-  ( C e. A -> ( 2nd ` <. (/) , C >. ) = C ) | 
						
							| 58 | 55 57 | sylan9eqr |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( ( 2nd o. h ) ` (/) ) = C ) | 
						
							| 59 |  | nfv |  |-  F/ k C e. A | 
						
							| 60 |  | nfv |  |-  F/ k h : _om --> ( _om X. A ) | 
						
							| 61 |  | nfv |  |-  F/ k ( h ` (/) ) = <. (/) , C >. | 
						
							| 62 |  | nfra1 |  |-  F/ k A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) | 
						
							| 63 | 60 61 62 | nf3an |  |-  F/ k ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) | 
						
							| 64 | 59 63 | nfan |  |-  F/ k ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) | 
						
							| 65 |  | fveq2 |  |-  ( m = (/) -> ( h ` m ) = ( h ` (/) ) ) | 
						
							| 66 |  | opeq1 |  |-  ( m = (/) -> <. m , z >. = <. (/) , z >. ) | 
						
							| 67 | 65 66 | eqeq12d |  |-  ( m = (/) -> ( ( h ` m ) = <. m , z >. <-> ( h ` (/) ) = <. (/) , z >. ) ) | 
						
							| 68 | 67 | exbidv |  |-  ( m = (/) -> ( E. z ( h ` m ) = <. m , z >. <-> E. z ( h ` (/) ) = <. (/) , z >. ) ) | 
						
							| 69 |  | fveq2 |  |-  ( m = i -> ( h ` m ) = ( h ` i ) ) | 
						
							| 70 |  | opeq1 |  |-  ( m = i -> <. m , z >. = <. i , z >. ) | 
						
							| 71 | 69 70 | eqeq12d |  |-  ( m = i -> ( ( h ` m ) = <. m , z >. <-> ( h ` i ) = <. i , z >. ) ) | 
						
							| 72 | 71 | exbidv |  |-  ( m = i -> ( E. z ( h ` m ) = <. m , z >. <-> E. z ( h ` i ) = <. i , z >. ) ) | 
						
							| 73 |  | fveq2 |  |-  ( m = suc i -> ( h ` m ) = ( h ` suc i ) ) | 
						
							| 74 |  | opeq1 |  |-  ( m = suc i -> <. m , z >. = <. suc i , z >. ) | 
						
							| 75 | 73 74 | eqeq12d |  |-  ( m = suc i -> ( ( h ` m ) = <. m , z >. <-> ( h ` suc i ) = <. suc i , z >. ) ) | 
						
							| 76 | 75 | exbidv |  |-  ( m = suc i -> ( E. z ( h ` m ) = <. m , z >. <-> E. z ( h ` suc i ) = <. suc i , z >. ) ) | 
						
							| 77 |  | opeq2 |  |-  ( z = C -> <. (/) , z >. = <. (/) , C >. ) | 
						
							| 78 | 77 | eqeq2d |  |-  ( z = C -> ( ( h ` (/) ) = <. (/) , z >. <-> ( h ` (/) ) = <. (/) , C >. ) ) | 
						
							| 79 | 78 | spcegv |  |-  ( C e. A -> ( ( h ` (/) ) = <. (/) , C >. -> E. z ( h ` (/) ) = <. (/) , z >. ) ) | 
						
							| 80 | 79 | imp |  |-  ( ( C e. A /\ ( h ` (/) ) = <. (/) , C >. ) -> E. z ( h ` (/) ) = <. (/) , z >. ) | 
						
							| 81 | 80 | 3ad2antr2 |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> E. z ( h ` (/) ) = <. (/) , z >. ) | 
						
							| 82 |  | fveq2 |  |-  ( ( h ` i ) = <. i , z >. -> ( G ` ( h ` i ) ) = ( G ` <. i , z >. ) ) | 
						
							| 83 |  | df-ov |  |-  ( i G z ) = ( G ` <. i , z >. ) | 
						
							| 84 | 82 83 | eqtr4di |  |-  ( ( h ` i ) = <. i , z >. -> ( G ` ( h ` i ) ) = ( i G z ) ) | 
						
							| 85 | 84 | adantl |  |-  ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( G ` ( h ` i ) ) = ( i G z ) ) | 
						
							| 86 |  | simplr |  |-  ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> i e. _om ) | 
						
							| 87 |  | ffvelcdm |  |-  ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( h ` i ) e. ( _om X. A ) ) | 
						
							| 88 |  | eleq1 |  |-  ( ( h ` i ) = <. i , z >. -> ( ( h ` i ) e. ( _om X. A ) <-> <. i , z >. e. ( _om X. A ) ) ) | 
						
							| 89 |  | opelxp2 |  |-  ( <. i , z >. e. ( _om X. A ) -> z e. A ) | 
						
							| 90 | 88 89 | biimtrdi |  |-  ( ( h ` i ) = <. i , z >. -> ( ( h ` i ) e. ( _om X. A ) -> z e. A ) ) | 
						
							| 91 | 87 90 | mpan9 |  |-  ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> z e. A ) | 
						
							| 92 |  | suceq |  |-  ( n = i -> suc n = suc i ) | 
						
							| 93 | 92 | sneqd |  |-  ( n = i -> { suc n } = { suc i } ) | 
						
							| 94 |  | oveq1 |  |-  ( n = i -> ( n F x ) = ( i F x ) ) | 
						
							| 95 | 93 94 | xpeq12d |  |-  ( n = i -> ( { suc n } X. ( n F x ) ) = ( { suc i } X. ( i F x ) ) ) | 
						
							| 96 |  | oveq2 |  |-  ( x = z -> ( i F x ) = ( i F z ) ) | 
						
							| 97 | 96 | xpeq2d |  |-  ( x = z -> ( { suc i } X. ( i F x ) ) = ( { suc i } X. ( i F z ) ) ) | 
						
							| 98 |  | snex |  |-  { suc i } e. _V | 
						
							| 99 |  | ovex |  |-  ( i F z ) e. _V | 
						
							| 100 | 98 99 | xpex |  |-  ( { suc i } X. ( i F z ) ) e. _V | 
						
							| 101 | 95 97 2 100 | ovmpo |  |-  ( ( i e. _om /\ z e. A ) -> ( i G z ) = ( { suc i } X. ( i F z ) ) ) | 
						
							| 102 | 86 91 101 | syl2anc |  |-  ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( i G z ) = ( { suc i } X. ( i F z ) ) ) | 
						
							| 103 | 85 102 | eqtrd |  |-  ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( G ` ( h ` i ) ) = ( { suc i } X. ( i F z ) ) ) | 
						
							| 104 |  | suceq |  |-  ( k = i -> suc k = suc i ) | 
						
							| 105 | 104 | fveq2d |  |-  ( k = i -> ( h ` suc k ) = ( h ` suc i ) ) | 
						
							| 106 |  | 2fveq3 |  |-  ( k = i -> ( G ` ( h ` k ) ) = ( G ` ( h ` i ) ) ) | 
						
							| 107 | 105 106 | eleq12d |  |-  ( k = i -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) <-> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) ) | 
						
							| 108 | 107 | rspcv |  |-  ( i e. _om -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) ) | 
						
							| 109 | 108 | ad2antlr |  |-  ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) ) | 
						
							| 110 |  | eleq2 |  |-  ( ( G ` ( h ` i ) ) = ( { suc i } X. ( i F z ) ) -> ( ( h ` suc i ) e. ( G ` ( h ` i ) ) <-> ( h ` suc i ) e. ( { suc i } X. ( i F z ) ) ) ) | 
						
							| 111 |  | elxp |  |-  ( ( h ` suc i ) e. ( { suc i } X. ( i F z ) ) <-> E. s E. t ( ( h ` suc i ) = <. s , t >. /\ ( s e. { suc i } /\ t e. ( i F z ) ) ) ) | 
						
							| 112 |  | velsn |  |-  ( s e. { suc i } <-> s = suc i ) | 
						
							| 113 |  | opeq1 |  |-  ( s = suc i -> <. s , t >. = <. suc i , t >. ) | 
						
							| 114 | 112 113 | sylbi |  |-  ( s e. { suc i } -> <. s , t >. = <. suc i , t >. ) | 
						
							| 115 | 114 | eqeq2d |  |-  ( s e. { suc i } -> ( ( h ` suc i ) = <. s , t >. <-> ( h ` suc i ) = <. suc i , t >. ) ) | 
						
							| 116 | 115 | biimpac |  |-  ( ( ( h ` suc i ) = <. s , t >. /\ s e. { suc i } ) -> ( h ` suc i ) = <. suc i , t >. ) | 
						
							| 117 | 116 | adantrr |  |-  ( ( ( h ` suc i ) = <. s , t >. /\ ( s e. { suc i } /\ t e. ( i F z ) ) ) -> ( h ` suc i ) = <. suc i , t >. ) | 
						
							| 118 | 117 | eximi |  |-  ( E. t ( ( h ` suc i ) = <. s , t >. /\ ( s e. { suc i } /\ t e. ( i F z ) ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) | 
						
							| 119 | 118 | exlimiv |  |-  ( E. s E. t ( ( h ` suc i ) = <. s , t >. /\ ( s e. { suc i } /\ t e. ( i F z ) ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) | 
						
							| 120 | 111 119 | sylbi |  |-  ( ( h ` suc i ) e. ( { suc i } X. ( i F z ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) | 
						
							| 121 | 110 120 | biimtrdi |  |-  ( ( G ` ( h ` i ) ) = ( { suc i } X. ( i F z ) ) -> ( ( h ` suc i ) e. ( G ` ( h ` i ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) ) | 
						
							| 122 | 103 109 121 | sylsyld |  |-  ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) ) | 
						
							| 123 | 122 | expcom |  |-  ( ( h ` i ) = <. i , z >. -> ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) ) ) | 
						
							| 124 | 123 | exlimiv |  |-  ( E. z ( h ` i ) = <. i , z >. -> ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) ) ) | 
						
							| 125 | 124 | com3l |  |-  ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( E. z ( h ` i ) = <. i , z >. -> E. t ( h ` suc i ) = <. suc i , t >. ) ) ) | 
						
							| 126 |  | opeq2 |  |-  ( t = z -> <. suc i , t >. = <. suc i , z >. ) | 
						
							| 127 | 126 | eqeq2d |  |-  ( t = z -> ( ( h ` suc i ) = <. suc i , t >. <-> ( h ` suc i ) = <. suc i , z >. ) ) | 
						
							| 128 | 127 | cbvexvw |  |-  ( E. t ( h ` suc i ) = <. suc i , t >. <-> E. z ( h ` suc i ) = <. suc i , z >. ) | 
						
							| 129 | 125 128 | syl8ib |  |-  ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) | 
						
							| 130 | 129 | impancom |  |-  ( ( h : _om --> ( _om X. A ) /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( i e. _om -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) | 
						
							| 131 | 130 | 3adant2 |  |-  ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( i e. _om -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) | 
						
							| 132 | 131 | adantl |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( i e. _om -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) | 
						
							| 133 | 132 | com12 |  |-  ( i e. _om -> ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) | 
						
							| 134 | 68 72 76 81 133 | finds2 |  |-  ( m e. _om -> ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> E. z ( h ` m ) = <. m , z >. ) ) | 
						
							| 135 | 134 | com12 |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( m e. _om -> E. z ( h ` m ) = <. m , z >. ) ) | 
						
							| 136 | 135 | ralrimiv |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> A. m e. _om E. z ( h ` m ) = <. m , z >. ) | 
						
							| 137 |  | fveq2 |  |-  ( m = k -> ( h ` m ) = ( h ` k ) ) | 
						
							| 138 |  | opeq1 |  |-  ( m = k -> <. m , z >. = <. k , z >. ) | 
						
							| 139 | 137 138 | eqeq12d |  |-  ( m = k -> ( ( h ` m ) = <. m , z >. <-> ( h ` k ) = <. k , z >. ) ) | 
						
							| 140 | 139 | exbidv |  |-  ( m = k -> ( E. z ( h ` m ) = <. m , z >. <-> E. z ( h ` k ) = <. k , z >. ) ) | 
						
							| 141 | 140 | rspccv |  |-  ( A. m e. _om E. z ( h ` m ) = <. m , z >. -> ( k e. _om -> E. z ( h ` k ) = <. k , z >. ) ) | 
						
							| 142 | 136 141 | syl |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( k e. _om -> E. z ( h ` k ) = <. k , z >. ) ) | 
						
							| 143 | 142 | 3impia |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> E. z ( h ` k ) = <. k , z >. ) | 
						
							| 144 |  | simp21 |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> h : _om --> ( _om X. A ) ) | 
						
							| 145 |  | simp3 |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> k e. _om ) | 
						
							| 146 |  | rspa |  |-  ( ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) /\ k e. _om ) -> ( h ` suc k ) e. ( G ` ( h ` k ) ) ) | 
						
							| 147 | 146 | 3ad2antl3 |  |-  ( ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( h ` suc k ) e. ( G ` ( h ` k ) ) ) | 
						
							| 148 | 147 | 3adant1 |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( h ` suc k ) e. ( G ` ( h ` k ) ) ) | 
						
							| 149 |  | simpl |  |-  ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( h ` k ) = <. k , z >. ) | 
						
							| 150 | 149 | fveq2d |  |-  ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( G ` ( h ` k ) ) = ( G ` <. k , z >. ) ) | 
						
							| 151 |  | simprr |  |-  ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> k e. _om ) | 
						
							| 152 |  | eleq1 |  |-  ( ( h ` k ) = <. k , z >. -> ( ( h ` k ) e. ( _om X. A ) <-> <. k , z >. e. ( _om X. A ) ) ) | 
						
							| 153 |  | opelxp2 |  |-  ( <. k , z >. e. ( _om X. A ) -> z e. A ) | 
						
							| 154 | 152 153 | biimtrdi |  |-  ( ( h ` k ) = <. k , z >. -> ( ( h ` k ) e. ( _om X. A ) -> z e. A ) ) | 
						
							| 155 |  | ffvelcdm |  |-  ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( h ` k ) e. ( _om X. A ) ) | 
						
							| 156 | 154 155 | impel |  |-  ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> z e. A ) | 
						
							| 157 |  | df-ov |  |-  ( k G z ) = ( G ` <. k , z >. ) | 
						
							| 158 |  | suceq |  |-  ( n = k -> suc n = suc k ) | 
						
							| 159 | 158 | sneqd |  |-  ( n = k -> { suc n } = { suc k } ) | 
						
							| 160 |  | oveq1 |  |-  ( n = k -> ( n F x ) = ( k F x ) ) | 
						
							| 161 | 159 160 | xpeq12d |  |-  ( n = k -> ( { suc n } X. ( n F x ) ) = ( { suc k } X. ( k F x ) ) ) | 
						
							| 162 |  | oveq2 |  |-  ( x = z -> ( k F x ) = ( k F z ) ) | 
						
							| 163 | 162 | xpeq2d |  |-  ( x = z -> ( { suc k } X. ( k F x ) ) = ( { suc k } X. ( k F z ) ) ) | 
						
							| 164 |  | snex |  |-  { suc k } e. _V | 
						
							| 165 |  | ovex |  |-  ( k F z ) e. _V | 
						
							| 166 | 164 165 | xpex |  |-  ( { suc k } X. ( k F z ) ) e. _V | 
						
							| 167 | 161 163 2 166 | ovmpo |  |-  ( ( k e. _om /\ z e. A ) -> ( k G z ) = ( { suc k } X. ( k F z ) ) ) | 
						
							| 168 | 157 167 | eqtr3id |  |-  ( ( k e. _om /\ z e. A ) -> ( G ` <. k , z >. ) = ( { suc k } X. ( k F z ) ) ) | 
						
							| 169 | 151 156 168 | syl2anc |  |-  ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( G ` <. k , z >. ) = ( { suc k } X. ( k F z ) ) ) | 
						
							| 170 | 150 169 | eqtrd |  |-  ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( G ` ( h ` k ) ) = ( { suc k } X. ( k F z ) ) ) | 
						
							| 171 | 170 | eleq2d |  |-  ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) <-> ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) ) ) | 
						
							| 172 |  | elxp |  |-  ( ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) <-> E. s E. t ( ( h ` suc k ) = <. s , t >. /\ ( s e. { suc k } /\ t e. ( k F z ) ) ) ) | 
						
							| 173 |  | peano2 |  |-  ( k e. _om -> suc k e. _om ) | 
						
							| 174 |  | fvco3 |  |-  ( ( h : _om --> ( _om X. A ) /\ suc k e. _om ) -> ( ( 2nd o. h ) ` suc k ) = ( 2nd ` ( h ` suc k ) ) ) | 
						
							| 175 | 173 174 | sylan2 |  |-  ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) = ( 2nd ` ( h ` suc k ) ) ) | 
						
							| 176 | 175 | adantl |  |-  ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` suc k ) = ( 2nd ` ( h ` suc k ) ) ) | 
						
							| 177 |  | simpll |  |-  ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( h ` suc k ) = <. s , t >. ) | 
						
							| 178 | 177 | fveq2d |  |-  ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( 2nd ` ( h ` suc k ) ) = ( 2nd ` <. s , t >. ) ) | 
						
							| 179 | 176 178 | eqtrd |  |-  ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` suc k ) = ( 2nd ` <. s , t >. ) ) | 
						
							| 180 |  | vex |  |-  s e. _V | 
						
							| 181 |  | vex |  |-  t e. _V | 
						
							| 182 | 180 181 | op2nd |  |-  ( 2nd ` <. s , t >. ) = t | 
						
							| 183 | 179 182 | eqtrdi |  |-  ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` suc k ) = t ) | 
						
							| 184 |  | fvco3 |  |-  ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` k ) = ( 2nd ` ( h ` k ) ) ) | 
						
							| 185 | 184 | adantl |  |-  ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` k ) = ( 2nd ` ( h ` k ) ) ) | 
						
							| 186 |  | simplr |  |-  ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( h ` k ) = <. k , z >. ) | 
						
							| 187 | 186 | fveq2d |  |-  ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( 2nd ` ( h ` k ) ) = ( 2nd ` <. k , z >. ) ) | 
						
							| 188 | 185 187 | eqtrd |  |-  ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` k ) = ( 2nd ` <. k , z >. ) ) | 
						
							| 189 |  | vex |  |-  k e. _V | 
						
							| 190 |  | vex |  |-  z e. _V | 
						
							| 191 | 189 190 | op2nd |  |-  ( 2nd ` <. k , z >. ) = z | 
						
							| 192 | 188 191 | eqtrdi |  |-  ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` k ) = z ) | 
						
							| 193 | 192 | oveq2d |  |-  ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( k F ( ( 2nd o. h ) ` k ) ) = ( k F z ) ) | 
						
							| 194 | 183 193 | eleq12d |  |-  ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) <-> t e. ( k F z ) ) ) | 
						
							| 195 | 194 | biimprcd |  |-  ( t e. ( k F z ) -> ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) | 
						
							| 196 | 195 | exp4c |  |-  ( t e. ( k F z ) -> ( ( h ` suc k ) = <. s , t >. -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) ) | 
						
							| 197 | 196 | adantl |  |-  ( ( s e. { suc k } /\ t e. ( k F z ) ) -> ( ( h ` suc k ) = <. s , t >. -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) ) | 
						
							| 198 | 197 | impcom |  |-  ( ( ( h ` suc k ) = <. s , t >. /\ ( s e. { suc k } /\ t e. ( k F z ) ) ) -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) | 
						
							| 199 | 198 | exlimivv |  |-  ( E. s E. t ( ( h ` suc k ) = <. s , t >. /\ ( s e. { suc k } /\ t e. ( k F z ) ) ) -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) | 
						
							| 200 | 172 199 | sylbi |  |-  ( ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) | 
						
							| 201 | 200 | com3l |  |-  ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) | 
						
							| 202 | 201 | imp |  |-  ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) | 
						
							| 203 | 171 202 | sylbid |  |-  ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) | 
						
							| 204 | 203 | ex |  |-  ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) | 
						
							| 205 | 204 | exlimiv |  |-  ( E. z ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) | 
						
							| 206 | 205 | 3imp |  |-  ( ( E. z ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) /\ ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) | 
						
							| 207 | 143 144 145 148 206 | syl121anc |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) | 
						
							| 208 | 207 | 3expia |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( k e. _om -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) | 
						
							| 209 | 64 208 | ralrimi |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> A. k e. _om ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) | 
						
							| 210 | 46 58 209 | 3jca |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( ( 2nd o. h ) : _om --> A /\ ( ( 2nd o. h ) ` (/) ) = C /\ A. k e. _om ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) | 
						
							| 211 |  | feq1 |  |-  ( g = ( 2nd o. h ) -> ( g : _om --> A <-> ( 2nd o. h ) : _om --> A ) ) | 
						
							| 212 |  | fveq1 |  |-  ( g = ( 2nd o. h ) -> ( g ` (/) ) = ( ( 2nd o. h ) ` (/) ) ) | 
						
							| 213 | 212 | eqeq1d |  |-  ( g = ( 2nd o. h ) -> ( ( g ` (/) ) = C <-> ( ( 2nd o. h ) ` (/) ) = C ) ) | 
						
							| 214 |  | fveq1 |  |-  ( g = ( 2nd o. h ) -> ( g ` suc k ) = ( ( 2nd o. h ) ` suc k ) ) | 
						
							| 215 |  | fveq1 |  |-  ( g = ( 2nd o. h ) -> ( g ` k ) = ( ( 2nd o. h ) ` k ) ) | 
						
							| 216 | 215 | oveq2d |  |-  ( g = ( 2nd o. h ) -> ( k F ( g ` k ) ) = ( k F ( ( 2nd o. h ) ` k ) ) ) | 
						
							| 217 | 214 216 | eleq12d |  |-  ( g = ( 2nd o. h ) -> ( ( g ` suc k ) e. ( k F ( g ` k ) ) <-> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) | 
						
							| 218 | 217 | ralbidv |  |-  ( g = ( 2nd o. h ) -> ( A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) <-> A. k e. _om ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) | 
						
							| 219 | 211 213 218 | 3anbi123d |  |-  ( g = ( 2nd o. h ) -> ( ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) <-> ( ( 2nd o. h ) : _om --> A /\ ( ( 2nd o. h ) ` (/) ) = C /\ A. k e. _om ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) | 
						
							| 220 | 49 210 219 | spcedv |  |-  ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) | 
						
							| 221 | 220 | ex |  |-  ( C e. A -> ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) ) | 
						
							| 222 | 221 | exlimdv |  |-  ( C e. A -> ( E. h ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) ) | 
						
							| 223 | 222 | adantr |  |-  ( ( C e. A /\ F : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> ( E. h ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) ) | 
						
							| 224 | 43 223 | mpd |  |-  ( ( C e. A /\ F : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) |