Step |
Hyp |
Ref |
Expression |
1 |
|
axdc4lem.1 |
|- A e. _V |
2 |
|
axdc4lem.2 |
|- G = ( n e. _om , x e. A |-> ( { suc n } X. ( n F x ) ) ) |
3 |
|
peano1 |
|- (/) e. _om |
4 |
|
opelxpi |
|- ( ( (/) e. _om /\ C e. A ) -> <. (/) , C >. e. ( _om X. A ) ) |
5 |
3 4
|
mpan |
|- ( C e. A -> <. (/) , C >. e. ( _om X. A ) ) |
6 |
|
simp2 |
|- ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> n e. _om ) |
7 |
|
fovrn |
|- ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> ( n F x ) e. ( ~P A \ { (/) } ) ) |
8 |
|
peano2 |
|- ( n e. _om -> suc n e. _om ) |
9 |
8
|
snssd |
|- ( n e. _om -> { suc n } C_ _om ) |
10 |
|
eldifi |
|- ( ( n F x ) e. ( ~P A \ { (/) } ) -> ( n F x ) e. ~P A ) |
11 |
1
|
elpw2 |
|- ( ( n F x ) e. ~P A <-> ( n F x ) C_ A ) |
12 |
|
xpss12 |
|- ( ( { suc n } C_ _om /\ ( n F x ) C_ A ) -> ( { suc n } X. ( n F x ) ) C_ ( _om X. A ) ) |
13 |
11 12
|
sylan2b |
|- ( ( { suc n } C_ _om /\ ( n F x ) e. ~P A ) -> ( { suc n } X. ( n F x ) ) C_ ( _om X. A ) ) |
14 |
9 10 13
|
syl2an |
|- ( ( n e. _om /\ ( n F x ) e. ( ~P A \ { (/) } ) ) -> ( { suc n } X. ( n F x ) ) C_ ( _om X. A ) ) |
15 |
|
snex |
|- { suc n } e. _V |
16 |
|
ovex |
|- ( n F x ) e. _V |
17 |
15 16
|
xpex |
|- ( { suc n } X. ( n F x ) ) e. _V |
18 |
17
|
elpw |
|- ( ( { suc n } X. ( n F x ) ) e. ~P ( _om X. A ) <-> ( { suc n } X. ( n F x ) ) C_ ( _om X. A ) ) |
19 |
14 18
|
sylibr |
|- ( ( n e. _om /\ ( n F x ) e. ( ~P A \ { (/) } ) ) -> ( { suc n } X. ( n F x ) ) e. ~P ( _om X. A ) ) |
20 |
6 7 19
|
syl2anc |
|- ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> ( { suc n } X. ( n F x ) ) e. ~P ( _om X. A ) ) |
21 |
|
eldifn |
|- ( ( n F x ) e. ( ~P A \ { (/) } ) -> -. ( n F x ) e. { (/) } ) |
22 |
16
|
elsn |
|- ( ( n F x ) e. { (/) } <-> ( n F x ) = (/) ) |
23 |
22
|
necon3bbii |
|- ( -. ( n F x ) e. { (/) } <-> ( n F x ) =/= (/) ) |
24 |
|
vex |
|- n e. _V |
25 |
24
|
sucex |
|- suc n e. _V |
26 |
25
|
snnz |
|- { suc n } =/= (/) |
27 |
|
xpnz |
|- ( ( { suc n } =/= (/) /\ ( n F x ) =/= (/) ) <-> ( { suc n } X. ( n F x ) ) =/= (/) ) |
28 |
27
|
biimpi |
|- ( ( { suc n } =/= (/) /\ ( n F x ) =/= (/) ) -> ( { suc n } X. ( n F x ) ) =/= (/) ) |
29 |
26 28
|
mpan |
|- ( ( n F x ) =/= (/) -> ( { suc n } X. ( n F x ) ) =/= (/) ) |
30 |
23 29
|
sylbi |
|- ( -. ( n F x ) e. { (/) } -> ( { suc n } X. ( n F x ) ) =/= (/) ) |
31 |
17
|
elsn |
|- ( ( { suc n } X. ( n F x ) ) e. { (/) } <-> ( { suc n } X. ( n F x ) ) = (/) ) |
32 |
31
|
necon3bbii |
|- ( -. ( { suc n } X. ( n F x ) ) e. { (/) } <-> ( { suc n } X. ( n F x ) ) =/= (/) ) |
33 |
30 32
|
sylibr |
|- ( -. ( n F x ) e. { (/) } -> -. ( { suc n } X. ( n F x ) ) e. { (/) } ) |
34 |
7 21 33
|
3syl |
|- ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> -. ( { suc n } X. ( n F x ) ) e. { (/) } ) |
35 |
20 34
|
eldifd |
|- ( ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> ( { suc n } X. ( n F x ) ) e. ( ~P ( _om X. A ) \ { (/) } ) ) |
36 |
35
|
3expib |
|- ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) -> ( ( n e. _om /\ x e. A ) -> ( { suc n } X. ( n F x ) ) e. ( ~P ( _om X. A ) \ { (/) } ) ) ) |
37 |
36
|
ralrimivv |
|- ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) -> A. n e. _om A. x e. A ( { suc n } X. ( n F x ) ) e. ( ~P ( _om X. A ) \ { (/) } ) ) |
38 |
2
|
fmpo |
|- ( A. n e. _om A. x e. A ( { suc n } X. ( n F x ) ) e. ( ~P ( _om X. A ) \ { (/) } ) <-> G : ( _om X. A ) --> ( ~P ( _om X. A ) \ { (/) } ) ) |
39 |
37 38
|
sylib |
|- ( F : ( _om X. A ) --> ( ~P A \ { (/) } ) -> G : ( _om X. A ) --> ( ~P ( _om X. A ) \ { (/) } ) ) |
40 |
|
dcomex |
|- _om e. _V |
41 |
40 1
|
xpex |
|- ( _om X. A ) e. _V |
42 |
41
|
axdc3 |
|- ( ( <. (/) , C >. e. ( _om X. A ) /\ G : ( _om X. A ) --> ( ~P ( _om X. A ) \ { (/) } ) ) -> E. h ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) |
43 |
5 39 42
|
syl2an |
|- ( ( C e. A /\ F : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> E. h ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) |
44 |
|
2ndcof |
|- ( h : _om --> ( _om X. A ) -> ( 2nd o. h ) : _om --> A ) |
45 |
44
|
3ad2ant1 |
|- ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( 2nd o. h ) : _om --> A ) |
46 |
45
|
adantl |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( 2nd o. h ) : _om --> A ) |
47 |
|
fex2 |
|- ( ( ( 2nd o. h ) : _om --> A /\ _om e. _V /\ A e. _V ) -> ( 2nd o. h ) e. _V ) |
48 |
40 1 47
|
mp3an23 |
|- ( ( 2nd o. h ) : _om --> A -> ( 2nd o. h ) e. _V ) |
49 |
46 48
|
syl |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( 2nd o. h ) e. _V ) |
50 |
|
fvco3 |
|- ( ( h : _om --> ( _om X. A ) /\ (/) e. _om ) -> ( ( 2nd o. h ) ` (/) ) = ( 2nd ` ( h ` (/) ) ) ) |
51 |
3 50
|
mpan2 |
|- ( h : _om --> ( _om X. A ) -> ( ( 2nd o. h ) ` (/) ) = ( 2nd ` ( h ` (/) ) ) ) |
52 |
51
|
3ad2ant1 |
|- ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( 2nd o. h ) ` (/) ) = ( 2nd ` ( h ` (/) ) ) ) |
53 |
|
fveq2 |
|- ( ( h ` (/) ) = <. (/) , C >. -> ( 2nd ` ( h ` (/) ) ) = ( 2nd ` <. (/) , C >. ) ) |
54 |
53
|
3ad2ant2 |
|- ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( 2nd ` ( h ` (/) ) ) = ( 2nd ` <. (/) , C >. ) ) |
55 |
52 54
|
eqtrd |
|- ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( 2nd o. h ) ` (/) ) = ( 2nd ` <. (/) , C >. ) ) |
56 |
|
op2ndg |
|- ( ( (/) e. _om /\ C e. A ) -> ( 2nd ` <. (/) , C >. ) = C ) |
57 |
3 56
|
mpan |
|- ( C e. A -> ( 2nd ` <. (/) , C >. ) = C ) |
58 |
55 57
|
sylan9eqr |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( ( 2nd o. h ) ` (/) ) = C ) |
59 |
|
nfv |
|- F/ k C e. A |
60 |
|
nfv |
|- F/ k h : _om --> ( _om X. A ) |
61 |
|
nfv |
|- F/ k ( h ` (/) ) = <. (/) , C >. |
62 |
|
nfra1 |
|- F/ k A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) |
63 |
60 61 62
|
nf3an |
|- F/ k ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) |
64 |
59 63
|
nfan |
|- F/ k ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) |
65 |
|
fveq2 |
|- ( m = (/) -> ( h ` m ) = ( h ` (/) ) ) |
66 |
|
opeq1 |
|- ( m = (/) -> <. m , z >. = <. (/) , z >. ) |
67 |
65 66
|
eqeq12d |
|- ( m = (/) -> ( ( h ` m ) = <. m , z >. <-> ( h ` (/) ) = <. (/) , z >. ) ) |
68 |
67
|
exbidv |
|- ( m = (/) -> ( E. z ( h ` m ) = <. m , z >. <-> E. z ( h ` (/) ) = <. (/) , z >. ) ) |
69 |
|
fveq2 |
|- ( m = i -> ( h ` m ) = ( h ` i ) ) |
70 |
|
opeq1 |
|- ( m = i -> <. m , z >. = <. i , z >. ) |
71 |
69 70
|
eqeq12d |
|- ( m = i -> ( ( h ` m ) = <. m , z >. <-> ( h ` i ) = <. i , z >. ) ) |
72 |
71
|
exbidv |
|- ( m = i -> ( E. z ( h ` m ) = <. m , z >. <-> E. z ( h ` i ) = <. i , z >. ) ) |
73 |
|
fveq2 |
|- ( m = suc i -> ( h ` m ) = ( h ` suc i ) ) |
74 |
|
opeq1 |
|- ( m = suc i -> <. m , z >. = <. suc i , z >. ) |
75 |
73 74
|
eqeq12d |
|- ( m = suc i -> ( ( h ` m ) = <. m , z >. <-> ( h ` suc i ) = <. suc i , z >. ) ) |
76 |
75
|
exbidv |
|- ( m = suc i -> ( E. z ( h ` m ) = <. m , z >. <-> E. z ( h ` suc i ) = <. suc i , z >. ) ) |
77 |
|
opeq2 |
|- ( z = C -> <. (/) , z >. = <. (/) , C >. ) |
78 |
77
|
eqeq2d |
|- ( z = C -> ( ( h ` (/) ) = <. (/) , z >. <-> ( h ` (/) ) = <. (/) , C >. ) ) |
79 |
78
|
spcegv |
|- ( C e. A -> ( ( h ` (/) ) = <. (/) , C >. -> E. z ( h ` (/) ) = <. (/) , z >. ) ) |
80 |
79
|
imp |
|- ( ( C e. A /\ ( h ` (/) ) = <. (/) , C >. ) -> E. z ( h ` (/) ) = <. (/) , z >. ) |
81 |
80
|
3ad2antr2 |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> E. z ( h ` (/) ) = <. (/) , z >. ) |
82 |
|
fveq2 |
|- ( ( h ` i ) = <. i , z >. -> ( G ` ( h ` i ) ) = ( G ` <. i , z >. ) ) |
83 |
|
df-ov |
|- ( i G z ) = ( G ` <. i , z >. ) |
84 |
82 83
|
eqtr4di |
|- ( ( h ` i ) = <. i , z >. -> ( G ` ( h ` i ) ) = ( i G z ) ) |
85 |
84
|
adantl |
|- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( G ` ( h ` i ) ) = ( i G z ) ) |
86 |
|
simplr |
|- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> i e. _om ) |
87 |
|
ffvelrn |
|- ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( h ` i ) e. ( _om X. A ) ) |
88 |
|
eleq1 |
|- ( ( h ` i ) = <. i , z >. -> ( ( h ` i ) e. ( _om X. A ) <-> <. i , z >. e. ( _om X. A ) ) ) |
89 |
|
opelxp2 |
|- ( <. i , z >. e. ( _om X. A ) -> z e. A ) |
90 |
88 89
|
syl6bi |
|- ( ( h ` i ) = <. i , z >. -> ( ( h ` i ) e. ( _om X. A ) -> z e. A ) ) |
91 |
87 90
|
mpan9 |
|- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> z e. A ) |
92 |
|
suceq |
|- ( n = i -> suc n = suc i ) |
93 |
92
|
sneqd |
|- ( n = i -> { suc n } = { suc i } ) |
94 |
|
oveq1 |
|- ( n = i -> ( n F x ) = ( i F x ) ) |
95 |
93 94
|
xpeq12d |
|- ( n = i -> ( { suc n } X. ( n F x ) ) = ( { suc i } X. ( i F x ) ) ) |
96 |
|
oveq2 |
|- ( x = z -> ( i F x ) = ( i F z ) ) |
97 |
96
|
xpeq2d |
|- ( x = z -> ( { suc i } X. ( i F x ) ) = ( { suc i } X. ( i F z ) ) ) |
98 |
|
snex |
|- { suc i } e. _V |
99 |
|
ovex |
|- ( i F z ) e. _V |
100 |
98 99
|
xpex |
|- ( { suc i } X. ( i F z ) ) e. _V |
101 |
95 97 2 100
|
ovmpo |
|- ( ( i e. _om /\ z e. A ) -> ( i G z ) = ( { suc i } X. ( i F z ) ) ) |
102 |
86 91 101
|
syl2anc |
|- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( i G z ) = ( { suc i } X. ( i F z ) ) ) |
103 |
85 102
|
eqtrd |
|- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( G ` ( h ` i ) ) = ( { suc i } X. ( i F z ) ) ) |
104 |
|
suceq |
|- ( k = i -> suc k = suc i ) |
105 |
104
|
fveq2d |
|- ( k = i -> ( h ` suc k ) = ( h ` suc i ) ) |
106 |
|
2fveq3 |
|- ( k = i -> ( G ` ( h ` k ) ) = ( G ` ( h ` i ) ) ) |
107 |
105 106
|
eleq12d |
|- ( k = i -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) <-> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) ) |
108 |
107
|
rspcv |
|- ( i e. _om -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) ) |
109 |
108
|
ad2antlr |
|- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( h ` suc i ) e. ( G ` ( h ` i ) ) ) ) |
110 |
|
eleq2 |
|- ( ( G ` ( h ` i ) ) = ( { suc i } X. ( i F z ) ) -> ( ( h ` suc i ) e. ( G ` ( h ` i ) ) <-> ( h ` suc i ) e. ( { suc i } X. ( i F z ) ) ) ) |
111 |
|
elxp |
|- ( ( h ` suc i ) e. ( { suc i } X. ( i F z ) ) <-> E. s E. t ( ( h ` suc i ) = <. s , t >. /\ ( s e. { suc i } /\ t e. ( i F z ) ) ) ) |
112 |
|
velsn |
|- ( s e. { suc i } <-> s = suc i ) |
113 |
|
opeq1 |
|- ( s = suc i -> <. s , t >. = <. suc i , t >. ) |
114 |
112 113
|
sylbi |
|- ( s e. { suc i } -> <. s , t >. = <. suc i , t >. ) |
115 |
114
|
eqeq2d |
|- ( s e. { suc i } -> ( ( h ` suc i ) = <. s , t >. <-> ( h ` suc i ) = <. suc i , t >. ) ) |
116 |
115
|
biimpac |
|- ( ( ( h ` suc i ) = <. s , t >. /\ s e. { suc i } ) -> ( h ` suc i ) = <. suc i , t >. ) |
117 |
116
|
adantrr |
|- ( ( ( h ` suc i ) = <. s , t >. /\ ( s e. { suc i } /\ t e. ( i F z ) ) ) -> ( h ` suc i ) = <. suc i , t >. ) |
118 |
117
|
eximi |
|- ( E. t ( ( h ` suc i ) = <. s , t >. /\ ( s e. { suc i } /\ t e. ( i F z ) ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) |
119 |
118
|
exlimiv |
|- ( E. s E. t ( ( h ` suc i ) = <. s , t >. /\ ( s e. { suc i } /\ t e. ( i F z ) ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) |
120 |
111 119
|
sylbi |
|- ( ( h ` suc i ) e. ( { suc i } X. ( i F z ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) |
121 |
110 120
|
syl6bi |
|- ( ( G ` ( h ` i ) ) = ( { suc i } X. ( i F z ) ) -> ( ( h ` suc i ) e. ( G ` ( h ` i ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) ) |
122 |
103 109 121
|
sylsyld |
|- ( ( ( h : _om --> ( _om X. A ) /\ i e. _om ) /\ ( h ` i ) = <. i , z >. ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) ) |
123 |
122
|
expcom |
|- ( ( h ` i ) = <. i , z >. -> ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) ) ) |
124 |
123
|
exlimiv |
|- ( E. z ( h ` i ) = <. i , z >. -> ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> E. t ( h ` suc i ) = <. suc i , t >. ) ) ) |
125 |
124
|
com3l |
|- ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( E. z ( h ` i ) = <. i , z >. -> E. t ( h ` suc i ) = <. suc i , t >. ) ) ) |
126 |
|
opeq2 |
|- ( t = z -> <. suc i , t >. = <. suc i , z >. ) |
127 |
126
|
eqeq2d |
|- ( t = z -> ( ( h ` suc i ) = <. suc i , t >. <-> ( h ` suc i ) = <. suc i , z >. ) ) |
128 |
127
|
cbvexvw |
|- ( E. t ( h ` suc i ) = <. suc i , t >. <-> E. z ( h ` suc i ) = <. suc i , z >. ) |
129 |
125 128
|
syl8ib |
|- ( ( h : _om --> ( _om X. A ) /\ i e. _om ) -> ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) |
130 |
129
|
impancom |
|- ( ( h : _om --> ( _om X. A ) /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( i e. _om -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) |
131 |
130
|
3adant2 |
|- ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( i e. _om -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) |
132 |
131
|
adantl |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( i e. _om -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) |
133 |
132
|
com12 |
|- ( i e. _om -> ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( E. z ( h ` i ) = <. i , z >. -> E. z ( h ` suc i ) = <. suc i , z >. ) ) ) |
134 |
68 72 76 81 133
|
finds2 |
|- ( m e. _om -> ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> E. z ( h ` m ) = <. m , z >. ) ) |
135 |
134
|
com12 |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( m e. _om -> E. z ( h ` m ) = <. m , z >. ) ) |
136 |
135
|
ralrimiv |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> A. m e. _om E. z ( h ` m ) = <. m , z >. ) |
137 |
|
fveq2 |
|- ( m = k -> ( h ` m ) = ( h ` k ) ) |
138 |
|
opeq1 |
|- ( m = k -> <. m , z >. = <. k , z >. ) |
139 |
137 138
|
eqeq12d |
|- ( m = k -> ( ( h ` m ) = <. m , z >. <-> ( h ` k ) = <. k , z >. ) ) |
140 |
139
|
exbidv |
|- ( m = k -> ( E. z ( h ` m ) = <. m , z >. <-> E. z ( h ` k ) = <. k , z >. ) ) |
141 |
140
|
rspccv |
|- ( A. m e. _om E. z ( h ` m ) = <. m , z >. -> ( k e. _om -> E. z ( h ` k ) = <. k , z >. ) ) |
142 |
136 141
|
syl |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( k e. _om -> E. z ( h ` k ) = <. k , z >. ) ) |
143 |
142
|
3impia |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> E. z ( h ` k ) = <. k , z >. ) |
144 |
|
simp21 |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> h : _om --> ( _om X. A ) ) |
145 |
|
simp3 |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> k e. _om ) |
146 |
|
rspa |
|- ( ( A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) /\ k e. _om ) -> ( h ` suc k ) e. ( G ` ( h ` k ) ) ) |
147 |
146
|
3ad2antl3 |
|- ( ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( h ` suc k ) e. ( G ` ( h ` k ) ) ) |
148 |
147
|
3adant1 |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( h ` suc k ) e. ( G ` ( h ` k ) ) ) |
149 |
|
simpl |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( h ` k ) = <. k , z >. ) |
150 |
149
|
fveq2d |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( G ` ( h ` k ) ) = ( G ` <. k , z >. ) ) |
151 |
|
simprr |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> k e. _om ) |
152 |
|
eleq1 |
|- ( ( h ` k ) = <. k , z >. -> ( ( h ` k ) e. ( _om X. A ) <-> <. k , z >. e. ( _om X. A ) ) ) |
153 |
|
opelxp2 |
|- ( <. k , z >. e. ( _om X. A ) -> z e. A ) |
154 |
152 153
|
syl6bi |
|- ( ( h ` k ) = <. k , z >. -> ( ( h ` k ) e. ( _om X. A ) -> z e. A ) ) |
155 |
|
ffvelrn |
|- ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( h ` k ) e. ( _om X. A ) ) |
156 |
154 155
|
impel |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> z e. A ) |
157 |
|
df-ov |
|- ( k G z ) = ( G ` <. k , z >. ) |
158 |
|
suceq |
|- ( n = k -> suc n = suc k ) |
159 |
158
|
sneqd |
|- ( n = k -> { suc n } = { suc k } ) |
160 |
|
oveq1 |
|- ( n = k -> ( n F x ) = ( k F x ) ) |
161 |
159 160
|
xpeq12d |
|- ( n = k -> ( { suc n } X. ( n F x ) ) = ( { suc k } X. ( k F x ) ) ) |
162 |
|
oveq2 |
|- ( x = z -> ( k F x ) = ( k F z ) ) |
163 |
162
|
xpeq2d |
|- ( x = z -> ( { suc k } X. ( k F x ) ) = ( { suc k } X. ( k F z ) ) ) |
164 |
|
snex |
|- { suc k } e. _V |
165 |
|
ovex |
|- ( k F z ) e. _V |
166 |
164 165
|
xpex |
|- ( { suc k } X. ( k F z ) ) e. _V |
167 |
161 163 2 166
|
ovmpo |
|- ( ( k e. _om /\ z e. A ) -> ( k G z ) = ( { suc k } X. ( k F z ) ) ) |
168 |
157 167
|
eqtr3id |
|- ( ( k e. _om /\ z e. A ) -> ( G ` <. k , z >. ) = ( { suc k } X. ( k F z ) ) ) |
169 |
151 156 168
|
syl2anc |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( G ` <. k , z >. ) = ( { suc k } X. ( k F z ) ) ) |
170 |
150 169
|
eqtrd |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( G ` ( h ` k ) ) = ( { suc k } X. ( k F z ) ) ) |
171 |
170
|
eleq2d |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) <-> ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) ) ) |
172 |
|
elxp |
|- ( ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) <-> E. s E. t ( ( h ` suc k ) = <. s , t >. /\ ( s e. { suc k } /\ t e. ( k F z ) ) ) ) |
173 |
|
peano2 |
|- ( k e. _om -> suc k e. _om ) |
174 |
|
fvco3 |
|- ( ( h : _om --> ( _om X. A ) /\ suc k e. _om ) -> ( ( 2nd o. h ) ` suc k ) = ( 2nd ` ( h ` suc k ) ) ) |
175 |
173 174
|
sylan2 |
|- ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) = ( 2nd ` ( h ` suc k ) ) ) |
176 |
175
|
adantl |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` suc k ) = ( 2nd ` ( h ` suc k ) ) ) |
177 |
|
simpll |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( h ` suc k ) = <. s , t >. ) |
178 |
177
|
fveq2d |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( 2nd ` ( h ` suc k ) ) = ( 2nd ` <. s , t >. ) ) |
179 |
176 178
|
eqtrd |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` suc k ) = ( 2nd ` <. s , t >. ) ) |
180 |
|
vex |
|- s e. _V |
181 |
|
vex |
|- t e. _V |
182 |
180 181
|
op2nd |
|- ( 2nd ` <. s , t >. ) = t |
183 |
179 182
|
eqtrdi |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` suc k ) = t ) |
184 |
|
fvco3 |
|- ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` k ) = ( 2nd ` ( h ` k ) ) ) |
185 |
184
|
adantl |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` k ) = ( 2nd ` ( h ` k ) ) ) |
186 |
|
simplr |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( h ` k ) = <. k , z >. ) |
187 |
186
|
fveq2d |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( 2nd ` ( h ` k ) ) = ( 2nd ` <. k , z >. ) ) |
188 |
185 187
|
eqtrd |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` k ) = ( 2nd ` <. k , z >. ) ) |
189 |
|
vex |
|- k e. _V |
190 |
|
vex |
|- z e. _V |
191 |
189 190
|
op2nd |
|- ( 2nd ` <. k , z >. ) = z |
192 |
188 191
|
eqtrdi |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` k ) = z ) |
193 |
192
|
oveq2d |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( k F ( ( 2nd o. h ) ` k ) ) = ( k F z ) ) |
194 |
183 193
|
eleq12d |
|- ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) <-> t e. ( k F z ) ) ) |
195 |
194
|
biimprcd |
|- ( t e. ( k F z ) -> ( ( ( ( h ` suc k ) = <. s , t >. /\ ( h ` k ) = <. k , z >. ) /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
196 |
195
|
exp4c |
|- ( t e. ( k F z ) -> ( ( h ` suc k ) = <. s , t >. -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) ) |
197 |
196
|
adantl |
|- ( ( s e. { suc k } /\ t e. ( k F z ) ) -> ( ( h ` suc k ) = <. s , t >. -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) ) |
198 |
197
|
impcom |
|- ( ( ( h ` suc k ) = <. s , t >. /\ ( s e. { suc k } /\ t e. ( k F z ) ) ) -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
199 |
198
|
exlimivv |
|- ( E. s E. t ( ( h ` suc k ) = <. s , t >. /\ ( s e. { suc k } /\ t e. ( k F z ) ) ) -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
200 |
172 199
|
sylbi |
|- ( ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) -> ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
201 |
200
|
com3l |
|- ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
202 |
201
|
imp |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( h ` suc k ) e. ( { suc k } X. ( k F z ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
203 |
171 202
|
sylbid |
|- ( ( ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) ) -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
204 |
203
|
ex |
|- ( ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
205 |
204
|
exlimiv |
|- ( E. z ( h ` k ) = <. k , z >. -> ( ( h : _om --> ( _om X. A ) /\ k e. _om ) -> ( ( h ` suc k ) e. ( G ` ( h ` k ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
206 |
205
|
3imp |
|- ( ( E. z ( h ` k ) = <. k , z >. /\ ( h : _om --> ( _om X. A ) /\ k e. _om ) /\ ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) |
207 |
143 144 145 148 206
|
syl121anc |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) /\ k e. _om ) -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) |
208 |
207
|
3expia |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( k e. _om -> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
209 |
64 208
|
ralrimi |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> A. k e. _om ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) |
210 |
46 58 209
|
3jca |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> ( ( 2nd o. h ) : _om --> A /\ ( ( 2nd o. h ) ` (/) ) = C /\ A. k e. _om ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
211 |
|
feq1 |
|- ( g = ( 2nd o. h ) -> ( g : _om --> A <-> ( 2nd o. h ) : _om --> A ) ) |
212 |
|
fveq1 |
|- ( g = ( 2nd o. h ) -> ( g ` (/) ) = ( ( 2nd o. h ) ` (/) ) ) |
213 |
212
|
eqeq1d |
|- ( g = ( 2nd o. h ) -> ( ( g ` (/) ) = C <-> ( ( 2nd o. h ) ` (/) ) = C ) ) |
214 |
|
fveq1 |
|- ( g = ( 2nd o. h ) -> ( g ` suc k ) = ( ( 2nd o. h ) ` suc k ) ) |
215 |
|
fveq1 |
|- ( g = ( 2nd o. h ) -> ( g ` k ) = ( ( 2nd o. h ) ` k ) ) |
216 |
215
|
oveq2d |
|- ( g = ( 2nd o. h ) -> ( k F ( g ` k ) ) = ( k F ( ( 2nd o. h ) ` k ) ) ) |
217 |
214 216
|
eleq12d |
|- ( g = ( 2nd o. h ) -> ( ( g ` suc k ) e. ( k F ( g ` k ) ) <-> ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
218 |
217
|
ralbidv |
|- ( g = ( 2nd o. h ) -> ( A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) <-> A. k e. _om ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) |
219 |
211 213 218
|
3anbi123d |
|- ( g = ( 2nd o. h ) -> ( ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) <-> ( ( 2nd o. h ) : _om --> A /\ ( ( 2nd o. h ) ` (/) ) = C /\ A. k e. _om ( ( 2nd o. h ) ` suc k ) e. ( k F ( ( 2nd o. h ) ` k ) ) ) ) ) |
220 |
49 210 219
|
spcedv |
|- ( ( C e. A /\ ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) |
221 |
220
|
ex |
|- ( C e. A -> ( ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) ) |
222 |
221
|
exlimdv |
|- ( C e. A -> ( E. h ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) ) |
223 |
222
|
adantr |
|- ( ( C e. A /\ F : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> ( E. h ( h : _om --> ( _om X. A ) /\ ( h ` (/) ) = <. (/) , C >. /\ A. k e. _om ( h ` suc k ) e. ( G ` ( h ` k ) ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) ) |
224 |
43 223
|
mpd |
|- ( ( C e. A /\ F : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> E. g ( g : _om --> A /\ ( g ` (/) ) = C /\ A. k e. _om ( g ` suc k ) e. ( k F ( g ` k ) ) ) ) |