Step |
Hyp |
Ref |
Expression |
1 |
|
axdc4uz.1 |
|- M e. ZZ |
2 |
|
axdc4uz.2 |
|- Z = ( ZZ>= ` M ) |
3 |
|
axdc4uz.3 |
|- A e. _V |
4 |
|
axdc4uz.4 |
|- G = ( rec ( ( y e. _V |-> ( y + 1 ) ) , M ) |` _om ) |
5 |
|
axdc4uz.5 |
|- H = ( n e. _om , x e. A |-> ( ( G ` n ) F x ) ) |
6 |
1 4
|
om2uzf1oi |
|- G : _om -1-1-onto-> ( ZZ>= ` M ) |
7 |
|
f1oeq3 |
|- ( Z = ( ZZ>= ` M ) -> ( G : _om -1-1-onto-> Z <-> G : _om -1-1-onto-> ( ZZ>= ` M ) ) ) |
8 |
2 7
|
ax-mp |
|- ( G : _om -1-1-onto-> Z <-> G : _om -1-1-onto-> ( ZZ>= ` M ) ) |
9 |
6 8
|
mpbir |
|- G : _om -1-1-onto-> Z |
10 |
|
f1of |
|- ( G : _om -1-1-onto-> Z -> G : _om --> Z ) |
11 |
9 10
|
ax-mp |
|- G : _om --> Z |
12 |
11
|
ffvelrni |
|- ( n e. _om -> ( G ` n ) e. Z ) |
13 |
|
fovrn |
|- ( ( F : ( Z X. A ) --> ( ~P A \ { (/) } ) /\ ( G ` n ) e. Z /\ x e. A ) -> ( ( G ` n ) F x ) e. ( ~P A \ { (/) } ) ) |
14 |
12 13
|
syl3an2 |
|- ( ( F : ( Z X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> ( ( G ` n ) F x ) e. ( ~P A \ { (/) } ) ) |
15 |
14
|
3expb |
|- ( ( F : ( Z X. A ) --> ( ~P A \ { (/) } ) /\ ( n e. _om /\ x e. A ) ) -> ( ( G ` n ) F x ) e. ( ~P A \ { (/) } ) ) |
16 |
15
|
ralrimivva |
|- ( F : ( Z X. A ) --> ( ~P A \ { (/) } ) -> A. n e. _om A. x e. A ( ( G ` n ) F x ) e. ( ~P A \ { (/) } ) ) |
17 |
5
|
fmpo |
|- ( A. n e. _om A. x e. A ( ( G ` n ) F x ) e. ( ~P A \ { (/) } ) <-> H : ( _om X. A ) --> ( ~P A \ { (/) } ) ) |
18 |
16 17
|
sylib |
|- ( F : ( Z X. A ) --> ( ~P A \ { (/) } ) -> H : ( _om X. A ) --> ( ~P A \ { (/) } ) ) |
19 |
3
|
axdc4 |
|- ( ( C e. A /\ H : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> E. f ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) ) |
20 |
18 19
|
sylan2 |
|- ( ( C e. A /\ F : ( Z X. A ) --> ( ~P A \ { (/) } ) ) -> E. f ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) ) |
21 |
|
f1ocnv |
|- ( G : _om -1-1-onto-> Z -> `' G : Z -1-1-onto-> _om ) |
22 |
|
f1of |
|- ( `' G : Z -1-1-onto-> _om -> `' G : Z --> _om ) |
23 |
9 21 22
|
mp2b |
|- `' G : Z --> _om |
24 |
|
fco |
|- ( ( f : _om --> A /\ `' G : Z --> _om ) -> ( f o. `' G ) : Z --> A ) |
25 |
23 24
|
mpan2 |
|- ( f : _om --> A -> ( f o. `' G ) : Z --> A ) |
26 |
25
|
3ad2ant1 |
|- ( ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> ( f o. `' G ) : Z --> A ) |
27 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
28 |
1 27
|
ax-mp |
|- M e. ( ZZ>= ` M ) |
29 |
28 2
|
eleqtrri |
|- M e. Z |
30 |
|
fvco3 |
|- ( ( `' G : Z --> _om /\ M e. Z ) -> ( ( f o. `' G ) ` M ) = ( f ` ( `' G ` M ) ) ) |
31 |
23 29 30
|
mp2an |
|- ( ( f o. `' G ) ` M ) = ( f ` ( `' G ` M ) ) |
32 |
1 4
|
om2uz0i |
|- ( G ` (/) ) = M |
33 |
|
peano1 |
|- (/) e. _om |
34 |
|
f1ocnvfv |
|- ( ( G : _om -1-1-onto-> Z /\ (/) e. _om ) -> ( ( G ` (/) ) = M -> ( `' G ` M ) = (/) ) ) |
35 |
9 33 34
|
mp2an |
|- ( ( G ` (/) ) = M -> ( `' G ` M ) = (/) ) |
36 |
32 35
|
ax-mp |
|- ( `' G ` M ) = (/) |
37 |
36
|
fveq2i |
|- ( f ` ( `' G ` M ) ) = ( f ` (/) ) |
38 |
31 37
|
eqtri |
|- ( ( f o. `' G ) ` M ) = ( f ` (/) ) |
39 |
|
simp2 |
|- ( ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> ( f ` (/) ) = C ) |
40 |
38 39
|
eqtrid |
|- ( ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> ( ( f o. `' G ) ` M ) = C ) |
41 |
23
|
ffvelrni |
|- ( k e. Z -> ( `' G ` k ) e. _om ) |
42 |
41
|
adantl |
|- ( ( f : _om --> A /\ k e. Z ) -> ( `' G ` k ) e. _om ) |
43 |
|
suceq |
|- ( m = ( `' G ` k ) -> suc m = suc ( `' G ` k ) ) |
44 |
43
|
fveq2d |
|- ( m = ( `' G ` k ) -> ( f ` suc m ) = ( f ` suc ( `' G ` k ) ) ) |
45 |
|
id |
|- ( m = ( `' G ` k ) -> m = ( `' G ` k ) ) |
46 |
|
fveq2 |
|- ( m = ( `' G ` k ) -> ( f ` m ) = ( f ` ( `' G ` k ) ) ) |
47 |
45 46
|
oveq12d |
|- ( m = ( `' G ` k ) -> ( m H ( f ` m ) ) = ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) ) |
48 |
44 47
|
eleq12d |
|- ( m = ( `' G ` k ) -> ( ( f ` suc m ) e. ( m H ( f ` m ) ) <-> ( f ` suc ( `' G ` k ) ) e. ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) ) ) |
49 |
48
|
rspcv |
|- ( ( `' G ` k ) e. _om -> ( A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) -> ( f ` suc ( `' G ` k ) ) e. ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) ) ) |
50 |
42 49
|
syl |
|- ( ( f : _om --> A /\ k e. Z ) -> ( A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) -> ( f ` suc ( `' G ` k ) ) e. ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) ) ) |
51 |
2
|
peano2uzs |
|- ( k e. Z -> ( k + 1 ) e. Z ) |
52 |
|
fvco3 |
|- ( ( `' G : Z --> _om /\ ( k + 1 ) e. Z ) -> ( ( f o. `' G ) ` ( k + 1 ) ) = ( f ` ( `' G ` ( k + 1 ) ) ) ) |
53 |
23 51 52
|
sylancr |
|- ( k e. Z -> ( ( f o. `' G ) ` ( k + 1 ) ) = ( f ` ( `' G ` ( k + 1 ) ) ) ) |
54 |
1 4
|
om2uzsuci |
|- ( ( `' G ` k ) e. _om -> ( G ` suc ( `' G ` k ) ) = ( ( G ` ( `' G ` k ) ) + 1 ) ) |
55 |
41 54
|
syl |
|- ( k e. Z -> ( G ` suc ( `' G ` k ) ) = ( ( G ` ( `' G ` k ) ) + 1 ) ) |
56 |
|
f1ocnvfv2 |
|- ( ( G : _om -1-1-onto-> Z /\ k e. Z ) -> ( G ` ( `' G ` k ) ) = k ) |
57 |
9 56
|
mpan |
|- ( k e. Z -> ( G ` ( `' G ` k ) ) = k ) |
58 |
57
|
oveq1d |
|- ( k e. Z -> ( ( G ` ( `' G ` k ) ) + 1 ) = ( k + 1 ) ) |
59 |
55 58
|
eqtrd |
|- ( k e. Z -> ( G ` suc ( `' G ` k ) ) = ( k + 1 ) ) |
60 |
|
peano2 |
|- ( ( `' G ` k ) e. _om -> suc ( `' G ` k ) e. _om ) |
61 |
41 60
|
syl |
|- ( k e. Z -> suc ( `' G ` k ) e. _om ) |
62 |
|
f1ocnvfv |
|- ( ( G : _om -1-1-onto-> Z /\ suc ( `' G ` k ) e. _om ) -> ( ( G ` suc ( `' G ` k ) ) = ( k + 1 ) -> ( `' G ` ( k + 1 ) ) = suc ( `' G ` k ) ) ) |
63 |
9 61 62
|
sylancr |
|- ( k e. Z -> ( ( G ` suc ( `' G ` k ) ) = ( k + 1 ) -> ( `' G ` ( k + 1 ) ) = suc ( `' G ` k ) ) ) |
64 |
59 63
|
mpd |
|- ( k e. Z -> ( `' G ` ( k + 1 ) ) = suc ( `' G ` k ) ) |
65 |
64
|
fveq2d |
|- ( k e. Z -> ( f ` ( `' G ` ( k + 1 ) ) ) = ( f ` suc ( `' G ` k ) ) ) |
66 |
53 65
|
eqtr2d |
|- ( k e. Z -> ( f ` suc ( `' G ` k ) ) = ( ( f o. `' G ) ` ( k + 1 ) ) ) |
67 |
66
|
adantl |
|- ( ( f : _om --> A /\ k e. Z ) -> ( f ` suc ( `' G ` k ) ) = ( ( f o. `' G ) ` ( k + 1 ) ) ) |
68 |
|
ffvelrn |
|- ( ( f : _om --> A /\ ( `' G ` k ) e. _om ) -> ( f ` ( `' G ` k ) ) e. A ) |
69 |
41 68
|
sylan2 |
|- ( ( f : _om --> A /\ k e. Z ) -> ( f ` ( `' G ` k ) ) e. A ) |
70 |
|
fveq2 |
|- ( n = ( `' G ` k ) -> ( G ` n ) = ( G ` ( `' G ` k ) ) ) |
71 |
70
|
oveq1d |
|- ( n = ( `' G ` k ) -> ( ( G ` n ) F x ) = ( ( G ` ( `' G ` k ) ) F x ) ) |
72 |
|
oveq2 |
|- ( x = ( f ` ( `' G ` k ) ) -> ( ( G ` ( `' G ` k ) ) F x ) = ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) ) |
73 |
|
ovex |
|- ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) e. _V |
74 |
71 72 5 73
|
ovmpo |
|- ( ( ( `' G ` k ) e. _om /\ ( f ` ( `' G ` k ) ) e. A ) -> ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) = ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) ) |
75 |
42 69 74
|
syl2anc |
|- ( ( f : _om --> A /\ k e. Z ) -> ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) = ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) ) |
76 |
|
fvco3 |
|- ( ( `' G : Z --> _om /\ k e. Z ) -> ( ( f o. `' G ) ` k ) = ( f ` ( `' G ` k ) ) ) |
77 |
23 76
|
mpan |
|- ( k e. Z -> ( ( f o. `' G ) ` k ) = ( f ` ( `' G ` k ) ) ) |
78 |
77
|
eqcomd |
|- ( k e. Z -> ( f ` ( `' G ` k ) ) = ( ( f o. `' G ) ` k ) ) |
79 |
57 78
|
oveq12d |
|- ( k e. Z -> ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) = ( k F ( ( f o. `' G ) ` k ) ) ) |
80 |
79
|
adantl |
|- ( ( f : _om --> A /\ k e. Z ) -> ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) = ( k F ( ( f o. `' G ) ` k ) ) ) |
81 |
75 80
|
eqtrd |
|- ( ( f : _om --> A /\ k e. Z ) -> ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) = ( k F ( ( f o. `' G ) ` k ) ) ) |
82 |
67 81
|
eleq12d |
|- ( ( f : _om --> A /\ k e. Z ) -> ( ( f ` suc ( `' G ` k ) ) e. ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) <-> ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) |
83 |
50 82
|
sylibd |
|- ( ( f : _om --> A /\ k e. Z ) -> ( A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) -> ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) |
84 |
83
|
impancom |
|- ( ( f : _om --> A /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> ( k e. Z -> ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) |
85 |
84
|
ralrimiv |
|- ( ( f : _om --> A /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> A. k e. Z ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) |
86 |
85
|
3adant2 |
|- ( ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> A. k e. Z ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) |
87 |
|
vex |
|- f e. _V |
88 |
|
rdgfun |
|- Fun rec ( ( y e. _V |-> ( y + 1 ) ) , M ) |
89 |
|
omex |
|- _om e. _V |
90 |
|
resfunexg |
|- ( ( Fun rec ( ( y e. _V |-> ( y + 1 ) ) , M ) /\ _om e. _V ) -> ( rec ( ( y e. _V |-> ( y + 1 ) ) , M ) |` _om ) e. _V ) |
91 |
88 89 90
|
mp2an |
|- ( rec ( ( y e. _V |-> ( y + 1 ) ) , M ) |` _om ) e. _V |
92 |
4 91
|
eqeltri |
|- G e. _V |
93 |
92
|
cnvex |
|- `' G e. _V |
94 |
87 93
|
coex |
|- ( f o. `' G ) e. _V |
95 |
|
feq1 |
|- ( g = ( f o. `' G ) -> ( g : Z --> A <-> ( f o. `' G ) : Z --> A ) ) |
96 |
|
fveq1 |
|- ( g = ( f o. `' G ) -> ( g ` M ) = ( ( f o. `' G ) ` M ) ) |
97 |
96
|
eqeq1d |
|- ( g = ( f o. `' G ) -> ( ( g ` M ) = C <-> ( ( f o. `' G ) ` M ) = C ) ) |
98 |
|
fveq1 |
|- ( g = ( f o. `' G ) -> ( g ` ( k + 1 ) ) = ( ( f o. `' G ) ` ( k + 1 ) ) ) |
99 |
|
fveq1 |
|- ( g = ( f o. `' G ) -> ( g ` k ) = ( ( f o. `' G ) ` k ) ) |
100 |
99
|
oveq2d |
|- ( g = ( f o. `' G ) -> ( k F ( g ` k ) ) = ( k F ( ( f o. `' G ) ` k ) ) ) |
101 |
98 100
|
eleq12d |
|- ( g = ( f o. `' G ) -> ( ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) <-> ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) |
102 |
101
|
ralbidv |
|- ( g = ( f o. `' G ) -> ( A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) <-> A. k e. Z ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) |
103 |
95 97 102
|
3anbi123d |
|- ( g = ( f o. `' G ) -> ( ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) <-> ( ( f o. `' G ) : Z --> A /\ ( ( f o. `' G ) ` M ) = C /\ A. k e. Z ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) ) |
104 |
94 103
|
spcev |
|- ( ( ( f o. `' G ) : Z --> A /\ ( ( f o. `' G ) ` M ) = C /\ A. k e. Z ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) |
105 |
26 40 86 104
|
syl3anc |
|- ( ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) |
106 |
105
|
exlimiv |
|- ( E. f ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) |
107 |
20 106
|
syl |
|- ( ( C e. A /\ F : ( Z X. A ) --> ( ~P A \ { (/) } ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) |