Step |
Hyp |
Ref |
Expression |
1 |
|
axdclem.1 |
|- F = ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) |
2 |
|
neeq1 |
|- ( y = { z | ( F ` K ) x z } -> ( y =/= (/) <-> { z | ( F ` K ) x z } =/= (/) ) ) |
3 |
|
abn0 |
|- ( { z | ( F ` K ) x z } =/= (/) <-> E. z ( F ` K ) x z ) |
4 |
2 3
|
bitrdi |
|- ( y = { z | ( F ` K ) x z } -> ( y =/= (/) <-> E. z ( F ` K ) x z ) ) |
5 |
|
eleq2 |
|- ( y = { z | ( F ` K ) x z } -> ( ( g ` y ) e. y <-> ( g ` y ) e. { z | ( F ` K ) x z } ) ) |
6 |
|
breq2 |
|- ( w = z -> ( ( F ` K ) x w <-> ( F ` K ) x z ) ) |
7 |
6
|
cbvabv |
|- { w | ( F ` K ) x w } = { z | ( F ` K ) x z } |
8 |
7
|
eleq2i |
|- ( ( g ` y ) e. { w | ( F ` K ) x w } <-> ( g ` y ) e. { z | ( F ` K ) x z } ) |
9 |
5 8
|
bitr4di |
|- ( y = { z | ( F ` K ) x z } -> ( ( g ` y ) e. y <-> ( g ` y ) e. { w | ( F ` K ) x w } ) ) |
10 |
|
fvex |
|- ( g ` y ) e. _V |
11 |
|
breq2 |
|- ( w = ( g ` y ) -> ( ( F ` K ) x w <-> ( F ` K ) x ( g ` y ) ) ) |
12 |
10 11
|
elab |
|- ( ( g ` y ) e. { w | ( F ` K ) x w } <-> ( F ` K ) x ( g ` y ) ) |
13 |
9 12
|
bitrdi |
|- ( y = { z | ( F ` K ) x z } -> ( ( g ` y ) e. y <-> ( F ` K ) x ( g ` y ) ) ) |
14 |
|
fveq2 |
|- ( y = { z | ( F ` K ) x z } -> ( g ` y ) = ( g ` { z | ( F ` K ) x z } ) ) |
15 |
14
|
breq2d |
|- ( y = { z | ( F ` K ) x z } -> ( ( F ` K ) x ( g ` y ) <-> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) |
16 |
13 15
|
bitrd |
|- ( y = { z | ( F ` K ) x z } -> ( ( g ` y ) e. y <-> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) |
17 |
4 16
|
imbi12d |
|- ( y = { z | ( F ` K ) x z } -> ( ( y =/= (/) -> ( g ` y ) e. y ) <-> ( E. z ( F ` K ) x z -> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) ) |
18 |
17
|
rspcv |
|- ( { z | ( F ` K ) x z } e. ~P dom x -> ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) -> ( E. z ( F ` K ) x z -> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) ) |
19 |
|
fvex |
|- ( F ` K ) e. _V |
20 |
|
vex |
|- z e. _V |
21 |
19 20
|
brelrn |
|- ( ( F ` K ) x z -> z e. ran x ) |
22 |
21
|
abssi |
|- { z | ( F ` K ) x z } C_ ran x |
23 |
|
sstr |
|- ( ( { z | ( F ` K ) x z } C_ ran x /\ ran x C_ dom x ) -> { z | ( F ` K ) x z } C_ dom x ) |
24 |
22 23
|
mpan |
|- ( ran x C_ dom x -> { z | ( F ` K ) x z } C_ dom x ) |
25 |
|
vex |
|- x e. _V |
26 |
25
|
dmex |
|- dom x e. _V |
27 |
26
|
elpw2 |
|- ( { z | ( F ` K ) x z } e. ~P dom x <-> { z | ( F ` K ) x z } C_ dom x ) |
28 |
24 27
|
sylibr |
|- ( ran x C_ dom x -> { z | ( F ` K ) x z } e. ~P dom x ) |
29 |
18 28
|
syl11 |
|- ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) -> ( ran x C_ dom x -> ( E. z ( F ` K ) x z -> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) ) |
30 |
29
|
3imp |
|- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z ( F ` K ) x z ) -> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) |
31 |
|
fvex |
|- ( g ` { z | ( F ` K ) x z } ) e. _V |
32 |
|
nfcv |
|- F/_ y s |
33 |
|
nfcv |
|- F/_ y K |
34 |
|
nfcv |
|- F/_ y ( g ` { z | ( F ` K ) x z } ) |
35 |
|
breq1 |
|- ( y = ( F ` K ) -> ( y x z <-> ( F ` K ) x z ) ) |
36 |
35
|
abbidv |
|- ( y = ( F ` K ) -> { z | y x z } = { z | ( F ` K ) x z } ) |
37 |
36
|
fveq2d |
|- ( y = ( F ` K ) -> ( g ` { z | y x z } ) = ( g ` { z | ( F ` K ) x z } ) ) |
38 |
32 33 34 1 37
|
frsucmpt |
|- ( ( K e. _om /\ ( g ` { z | ( F ` K ) x z } ) e. _V ) -> ( F ` suc K ) = ( g ` { z | ( F ` K ) x z } ) ) |
39 |
31 38
|
mpan2 |
|- ( K e. _om -> ( F ` suc K ) = ( g ` { z | ( F ` K ) x z } ) ) |
40 |
39
|
breq2d |
|- ( K e. _om -> ( ( F ` K ) x ( F ` suc K ) <-> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) |
41 |
30 40
|
syl5ibrcom |
|- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z ( F ` K ) x z ) -> ( K e. _om -> ( F ` K ) x ( F ` suc K ) ) ) |