| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axdclem.1 |  |-  F = ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) | 
						
							| 2 |  | neeq1 |  |-  ( y = { z | ( F ` K ) x z } -> ( y =/= (/) <-> { z | ( F ` K ) x z } =/= (/) ) ) | 
						
							| 3 |  | abn0 |  |-  ( { z | ( F ` K ) x z } =/= (/) <-> E. z ( F ` K ) x z ) | 
						
							| 4 | 2 3 | bitrdi |  |-  ( y = { z | ( F ` K ) x z } -> ( y =/= (/) <-> E. z ( F ` K ) x z ) ) | 
						
							| 5 |  | eleq2 |  |-  ( y = { z | ( F ` K ) x z } -> ( ( g ` y ) e. y <-> ( g ` y ) e. { z | ( F ` K ) x z } ) ) | 
						
							| 6 |  | breq2 |  |-  ( w = z -> ( ( F ` K ) x w <-> ( F ` K ) x z ) ) | 
						
							| 7 | 6 | cbvabv |  |-  { w | ( F ` K ) x w } = { z | ( F ` K ) x z } | 
						
							| 8 | 7 | eleq2i |  |-  ( ( g ` y ) e. { w | ( F ` K ) x w } <-> ( g ` y ) e. { z | ( F ` K ) x z } ) | 
						
							| 9 | 5 8 | bitr4di |  |-  ( y = { z | ( F ` K ) x z } -> ( ( g ` y ) e. y <-> ( g ` y ) e. { w | ( F ` K ) x w } ) ) | 
						
							| 10 |  | fvex |  |-  ( g ` y ) e. _V | 
						
							| 11 |  | breq2 |  |-  ( w = ( g ` y ) -> ( ( F ` K ) x w <-> ( F ` K ) x ( g ` y ) ) ) | 
						
							| 12 | 10 11 | elab |  |-  ( ( g ` y ) e. { w | ( F ` K ) x w } <-> ( F ` K ) x ( g ` y ) ) | 
						
							| 13 | 9 12 | bitrdi |  |-  ( y = { z | ( F ` K ) x z } -> ( ( g ` y ) e. y <-> ( F ` K ) x ( g ` y ) ) ) | 
						
							| 14 |  | fveq2 |  |-  ( y = { z | ( F ` K ) x z } -> ( g ` y ) = ( g ` { z | ( F ` K ) x z } ) ) | 
						
							| 15 | 14 | breq2d |  |-  ( y = { z | ( F ` K ) x z } -> ( ( F ` K ) x ( g ` y ) <-> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) | 
						
							| 16 | 13 15 | bitrd |  |-  ( y = { z | ( F ` K ) x z } -> ( ( g ` y ) e. y <-> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) | 
						
							| 17 | 4 16 | imbi12d |  |-  ( y = { z | ( F ` K ) x z } -> ( ( y =/= (/) -> ( g ` y ) e. y ) <-> ( E. z ( F ` K ) x z -> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) ) | 
						
							| 18 | 17 | rspcv |  |-  ( { z | ( F ` K ) x z } e. ~P dom x -> ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) -> ( E. z ( F ` K ) x z -> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) ) | 
						
							| 19 |  | fvex |  |-  ( F ` K ) e. _V | 
						
							| 20 |  | vex |  |-  z e. _V | 
						
							| 21 | 19 20 | brelrn |  |-  ( ( F ` K ) x z -> z e. ran x ) | 
						
							| 22 | 21 | abssi |  |-  { z | ( F ` K ) x z } C_ ran x | 
						
							| 23 |  | sstr |  |-  ( ( { z | ( F ` K ) x z } C_ ran x /\ ran x C_ dom x ) -> { z | ( F ` K ) x z } C_ dom x ) | 
						
							| 24 | 22 23 | mpan |  |-  ( ran x C_ dom x -> { z | ( F ` K ) x z } C_ dom x ) | 
						
							| 25 |  | vex |  |-  x e. _V | 
						
							| 26 | 25 | dmex |  |-  dom x e. _V | 
						
							| 27 | 26 | elpw2 |  |-  ( { z | ( F ` K ) x z } e. ~P dom x <-> { z | ( F ` K ) x z } C_ dom x ) | 
						
							| 28 | 24 27 | sylibr |  |-  ( ran x C_ dom x -> { z | ( F ` K ) x z } e. ~P dom x ) | 
						
							| 29 | 18 28 | syl11 |  |-  ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) -> ( ran x C_ dom x -> ( E. z ( F ` K ) x z -> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) ) | 
						
							| 30 | 29 | 3imp |  |-  ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z ( F ` K ) x z ) -> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) | 
						
							| 31 |  | fvex |  |-  ( g ` { z | ( F ` K ) x z } ) e. _V | 
						
							| 32 |  | nfcv |  |-  F/_ y s | 
						
							| 33 |  | nfcv |  |-  F/_ y K | 
						
							| 34 |  | nfcv |  |-  F/_ y ( g ` { z | ( F ` K ) x z } ) | 
						
							| 35 |  | breq1 |  |-  ( y = ( F ` K ) -> ( y x z <-> ( F ` K ) x z ) ) | 
						
							| 36 | 35 | abbidv |  |-  ( y = ( F ` K ) -> { z | y x z } = { z | ( F ` K ) x z } ) | 
						
							| 37 | 36 | fveq2d |  |-  ( y = ( F ` K ) -> ( g ` { z | y x z } ) = ( g ` { z | ( F ` K ) x z } ) ) | 
						
							| 38 | 32 33 34 1 37 | frsucmpt |  |-  ( ( K e. _om /\ ( g ` { z | ( F ` K ) x z } ) e. _V ) -> ( F ` suc K ) = ( g ` { z | ( F ` K ) x z } ) ) | 
						
							| 39 | 31 38 | mpan2 |  |-  ( K e. _om -> ( F ` suc K ) = ( g ` { z | ( F ` K ) x z } ) ) | 
						
							| 40 | 39 | breq2d |  |-  ( K e. _om -> ( ( F ` K ) x ( F ` suc K ) <-> ( F ` K ) x ( g ` { z | ( F ` K ) x z } ) ) ) | 
						
							| 41 | 30 40 | syl5ibrcom |  |-  ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z ( F ` K ) x z ) -> ( K e. _om -> ( F ` K ) x ( F ` suc K ) ) ) |