Step |
Hyp |
Ref |
Expression |
1 |
|
axdclem2.1 |
|- F = ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) |
2 |
|
frfnom |
|- ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) Fn _om |
3 |
1
|
fneq1i |
|- ( F Fn _om <-> ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) Fn _om ) |
4 |
2 3
|
mpbir |
|- F Fn _om |
5 |
4
|
a1i |
|- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> F Fn _om ) |
6 |
|
omex |
|- _om e. _V |
7 |
6
|
a1i |
|- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> _om e. _V ) |
8 |
5 7
|
fnexd |
|- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> F e. _V ) |
9 |
|
fveq2 |
|- ( n = (/) -> ( F ` n ) = ( F ` (/) ) ) |
10 |
|
suceq |
|- ( n = (/) -> suc n = suc (/) ) |
11 |
10
|
fveq2d |
|- ( n = (/) -> ( F ` suc n ) = ( F ` suc (/) ) ) |
12 |
9 11
|
breq12d |
|- ( n = (/) -> ( ( F ` n ) x ( F ` suc n ) <-> ( F ` (/) ) x ( F ` suc (/) ) ) ) |
13 |
|
fveq2 |
|- ( n = k -> ( F ` n ) = ( F ` k ) ) |
14 |
|
suceq |
|- ( n = k -> suc n = suc k ) |
15 |
14
|
fveq2d |
|- ( n = k -> ( F ` suc n ) = ( F ` suc k ) ) |
16 |
13 15
|
breq12d |
|- ( n = k -> ( ( F ` n ) x ( F ` suc n ) <-> ( F ` k ) x ( F ` suc k ) ) ) |
17 |
|
fveq2 |
|- ( n = suc k -> ( F ` n ) = ( F ` suc k ) ) |
18 |
|
suceq |
|- ( n = suc k -> suc n = suc suc k ) |
19 |
18
|
fveq2d |
|- ( n = suc k -> ( F ` suc n ) = ( F ` suc suc k ) ) |
20 |
17 19
|
breq12d |
|- ( n = suc k -> ( ( F ` n ) x ( F ` suc n ) <-> ( F ` suc k ) x ( F ` suc suc k ) ) ) |
21 |
1
|
fveq1i |
|- ( F ` (/) ) = ( ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) ` (/) ) |
22 |
|
fr0g |
|- ( s e. _V -> ( ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) ` (/) ) = s ) |
23 |
22
|
elv |
|- ( ( rec ( ( y e. _V |-> ( g ` { z | y x z } ) ) , s ) |` _om ) ` (/) ) = s |
24 |
21 23
|
eqtri |
|- ( F ` (/) ) = s |
25 |
24
|
breq1i |
|- ( ( F ` (/) ) x z <-> s x z ) |
26 |
25
|
biimpri |
|- ( s x z -> ( F ` (/) ) x z ) |
27 |
26
|
eximi |
|- ( E. z s x z -> E. z ( F ` (/) ) x z ) |
28 |
|
peano1 |
|- (/) e. _om |
29 |
1
|
axdclem |
|- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z ( F ` (/) ) x z ) -> ( (/) e. _om -> ( F ` (/) ) x ( F ` suc (/) ) ) ) |
30 |
28 29
|
mpi |
|- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z ( F ` (/) ) x z ) -> ( F ` (/) ) x ( F ` suc (/) ) ) |
31 |
27 30
|
syl3an3 |
|- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z s x z ) -> ( F ` (/) ) x ( F ` suc (/) ) ) |
32 |
31
|
3com23 |
|- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> ( F ` (/) ) x ( F ` suc (/) ) ) |
33 |
|
fvex |
|- ( F ` k ) e. _V |
34 |
|
fvex |
|- ( F ` suc k ) e. _V |
35 |
33 34
|
brelrn |
|- ( ( F ` k ) x ( F ` suc k ) -> ( F ` suc k ) e. ran x ) |
36 |
|
ssel |
|- ( ran x C_ dom x -> ( ( F ` suc k ) e. ran x -> ( F ` suc k ) e. dom x ) ) |
37 |
35 36
|
syl5 |
|- ( ran x C_ dom x -> ( ( F ` k ) x ( F ` suc k ) -> ( F ` suc k ) e. dom x ) ) |
38 |
34
|
eldm |
|- ( ( F ` suc k ) e. dom x <-> E. z ( F ` suc k ) x z ) |
39 |
37 38
|
syl6ib |
|- ( ran x C_ dom x -> ( ( F ` k ) x ( F ` suc k ) -> E. z ( F ` suc k ) x z ) ) |
40 |
39
|
ad2antll |
|- ( ( k e. _om /\ ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x ) ) -> ( ( F ` k ) x ( F ` suc k ) -> E. z ( F ` suc k ) x z ) ) |
41 |
|
peano2 |
|- ( k e. _om -> suc k e. _om ) |
42 |
1
|
axdclem |
|- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z ( F ` suc k ) x z ) -> ( suc k e. _om -> ( F ` suc k ) x ( F ` suc suc k ) ) ) |
43 |
41 42
|
syl5 |
|- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x /\ E. z ( F ` suc k ) x z ) -> ( k e. _om -> ( F ` suc k ) x ( F ` suc suc k ) ) ) |
44 |
43
|
3expia |
|- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x ) -> ( E. z ( F ` suc k ) x z -> ( k e. _om -> ( F ` suc k ) x ( F ` suc suc k ) ) ) ) |
45 |
44
|
com3r |
|- ( k e. _om -> ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x ) -> ( E. z ( F ` suc k ) x z -> ( F ` suc k ) x ( F ` suc suc k ) ) ) ) |
46 |
45
|
imp |
|- ( ( k e. _om /\ ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x ) ) -> ( E. z ( F ` suc k ) x z -> ( F ` suc k ) x ( F ` suc suc k ) ) ) |
47 |
40 46
|
syld |
|- ( ( k e. _om /\ ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ ran x C_ dom x ) ) -> ( ( F ` k ) x ( F ` suc k ) -> ( F ` suc k ) x ( F ` suc suc k ) ) ) |
48 |
47
|
3adantr2 |
|- ( ( k e. _om /\ ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) ) -> ( ( F ` k ) x ( F ` suc k ) -> ( F ` suc k ) x ( F ` suc suc k ) ) ) |
49 |
48
|
ex |
|- ( k e. _om -> ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> ( ( F ` k ) x ( F ` suc k ) -> ( F ` suc k ) x ( F ` suc suc k ) ) ) ) |
50 |
12 16 20 32 49
|
finds2 |
|- ( n e. _om -> ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> ( F ` n ) x ( F ` suc n ) ) ) |
51 |
50
|
com12 |
|- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> ( n e. _om -> ( F ` n ) x ( F ` suc n ) ) ) |
52 |
51
|
ralrimiv |
|- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> A. n e. _om ( F ` n ) x ( F ` suc n ) ) |
53 |
|
fveq1 |
|- ( f = F -> ( f ` n ) = ( F ` n ) ) |
54 |
|
fveq1 |
|- ( f = F -> ( f ` suc n ) = ( F ` suc n ) ) |
55 |
53 54
|
breq12d |
|- ( f = F -> ( ( f ` n ) x ( f ` suc n ) <-> ( F ` n ) x ( F ` suc n ) ) ) |
56 |
55
|
ralbidv |
|- ( f = F -> ( A. n e. _om ( f ` n ) x ( f ` suc n ) <-> A. n e. _om ( F ` n ) x ( F ` suc n ) ) ) |
57 |
8 52 56
|
spcedv |
|- ( ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) /\ E. z s x z /\ ran x C_ dom x ) -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) |
58 |
57
|
3exp |
|- ( A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) -> ( E. z s x z -> ( ran x C_ dom x -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) ) ) |
59 |
|
vex |
|- x e. _V |
60 |
59
|
dmex |
|- dom x e. _V |
61 |
60
|
pwex |
|- ~P dom x e. _V |
62 |
61
|
ac4c |
|- E. g A. y e. ~P dom x ( y =/= (/) -> ( g ` y ) e. y ) |
63 |
58 62
|
exlimiiv |
|- ( E. z s x z -> ( ran x C_ dom x -> E. f A. n e. _om ( f ` n ) x ( f ` suc n ) ) ) |