Description: The axiom of extensionality ( ax-ext ) restated so that it postulates the existence of a set z given two arbitrary sets x and y . This way to express it follows the general idea of the other ZFC axioms, which is to postulate the existence of sets given other sets. (Contributed by NM, 28-Sep-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | axexte | |- E. z ( ( z e. x <-> z e. y ) -> x = y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ext | |- ( A. z ( z e. x <-> z e. y ) -> x = y ) |
|
2 | 19.36v | |- ( E. z ( ( z e. x <-> z e. y ) -> x = y ) <-> ( A. z ( z e. x <-> z e. y ) -> x = y ) ) |
|
3 | 1 2 | mpbir | |- E. z ( ( z e. x <-> z e. y ) -> x = y ) |