Metamath Proof Explorer


Theorem axexte

Description: The axiom of extensionality ( ax-ext ) restated so that it postulates the existence of a set z given two arbitrary sets x and y . This way to express it follows the general idea of the other ZFC axioms, which is to postulate the existence of sets given other sets. (Contributed by NM, 28-Sep-2003)

Ref Expression
Assertion axexte
|- E. z ( ( z e. x <-> z e. y ) -> x = y )

Proof

Step Hyp Ref Expression
1 ax-ext
 |-  ( A. z ( z e. x <-> z e. y ) -> x = y )
2 19.36v
 |-  ( E. z ( ( z e. x <-> z e. y ) -> x = y ) <-> ( A. z ( z e. x <-> z e. y ) -> x = y ) )
3 1 2 mpbir
 |-  E. z ( ( z e. x <-> z e. y ) -> x = y )