Metamath Proof Explorer


Theorem axhis1-zf

Description: Derive Axiom ax-his1 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)

Ref Expression
Hypotheses axhil.1
|- U = <. <. +h , .h >. , normh >.
axhil.2
|- U e. CHilOLD
axhfi.1
|- .ih = ( .iOLD ` U )
Assertion axhis1-zf
|- ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) = ( * ` ( B .ih A ) ) )

Proof

Step Hyp Ref Expression
1 axhil.1
 |-  U = <. <. +h , .h >. , normh >.
2 axhil.2
 |-  U e. CHilOLD
3 axhfi.1
 |-  .ih = ( .iOLD ` U )
4 df-hba
 |-  ~H = ( BaseSet ` <. <. +h , .h >. , normh >. )
5 1 fveq2i
 |-  ( BaseSet ` U ) = ( BaseSet ` <. <. +h , .h >. , normh >. )
6 4 5 eqtr4i
 |-  ~H = ( BaseSet ` U )
7 6 3 hlipcj
 |-  ( ( U e. CHilOLD /\ A e. ~H /\ B e. ~H ) -> ( A .ih B ) = ( * ` ( B .ih A ) ) )
8 2 7 mp3an1
 |-  ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) = ( * ` ( B .ih A ) ) )