Step |
Hyp |
Ref |
Expression |
1 |
|
axhil.1 |
|- U = <. <. +h , .h >. , normh >. |
2 |
|
axhil.2 |
|- U e. CHilOLD |
3 |
|
axhfi.1 |
|- .ih = ( .iOLD ` U ) |
4 |
|
df-hba |
|- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
5 |
1
|
fveq2i |
|- ( BaseSet ` U ) = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
6 |
4 5
|
eqtr4i |
|- ~H = ( BaseSet ` U ) |
7 |
2
|
hlnvi |
|- U e. NrmCVec |
8 |
1 7
|
h2hva |
|- +h = ( +v ` U ) |
9 |
6 8 3
|
hlipdir |
|- ( ( U e. CHilOLD /\ ( A e. ~H /\ B e. ~H /\ C e. ~H ) ) -> ( ( A +h B ) .ih C ) = ( ( A .ih C ) + ( B .ih C ) ) ) |
10 |
2 9
|
mpan |
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) .ih C ) = ( ( A .ih C ) + ( B .ih C ) ) ) |