Step |
Hyp |
Ref |
Expression |
1 |
|
axhil.1 |
|- U = <. <. +h , .h >. , normh >. |
2 |
|
axhil.2 |
|- U e. CHilOLD |
3 |
|
axhfi.1 |
|- .ih = ( .iOLD ` U ) |
4 |
|
df-hba |
|- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
5 |
1
|
fveq2i |
|- ( BaseSet ` U ) = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
6 |
4 5
|
eqtr4i |
|- ~H = ( BaseSet ` U ) |
7 |
|
df-h0v |
|- 0h = ( 0vec ` <. <. +h , .h >. , normh >. ) |
8 |
1
|
fveq2i |
|- ( 0vec ` U ) = ( 0vec ` <. <. +h , .h >. , normh >. ) |
9 |
7 8
|
eqtr4i |
|- 0h = ( 0vec ` U ) |
10 |
6 9 3
|
hlipgt0 |
|- ( ( U e. CHilOLD /\ A e. ~H /\ A =/= 0h ) -> 0 < ( A .ih A ) ) |
11 |
2 10
|
mp3an1 |
|- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( A .ih A ) ) |