Metamath Proof Explorer


Theorem axinf

Description: The first version of the Axiom of Infinity ax-inf proved from the second version ax-inf2 . Note that we didn't use ax-reg , unlike the other direction axinf2 . (Contributed by NM, 24-Apr-2009)

Ref Expression
Assertion axinf
|- E. y ( x e. y /\ A. z ( z e. y -> E. w ( z e. w /\ w e. y ) ) )

Proof

Step Hyp Ref Expression
1 omex
 |-  _om e. _V
2 inf0
 |-  ( _om e. _V -> E. y ( x e. y /\ A. z ( z e. y -> E. w ( z e. w /\ w e. y ) ) ) )
3 1 2 ax-mp
 |-  E. y ( x e. y /\ A. z ( z e. y -> E. w ( z e. w /\ w e. y ) ) )