| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axlowdimlem10.1 |
|- Q = ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) |
| 2 |
|
ovex |
|- ( I + 1 ) e. _V |
| 3 |
|
1ex |
|- 1 e. _V |
| 4 |
2 3
|
f1osn |
|- { <. ( I + 1 ) , 1 >. } : { ( I + 1 ) } -1-1-onto-> { 1 } |
| 5 |
|
f1of |
|- ( { <. ( I + 1 ) , 1 >. } : { ( I + 1 ) } -1-1-onto-> { 1 } -> { <. ( I + 1 ) , 1 >. } : { ( I + 1 ) } --> { 1 } ) |
| 6 |
4 5
|
ax-mp |
|- { <. ( I + 1 ) , 1 >. } : { ( I + 1 ) } --> { 1 } |
| 7 |
|
c0ex |
|- 0 e. _V |
| 8 |
7
|
fconst |
|- ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) : ( ( 1 ... N ) \ { ( I + 1 ) } ) --> { 0 } |
| 9 |
6 8
|
pm3.2i |
|- ( { <. ( I + 1 ) , 1 >. } : { ( I + 1 ) } --> { 1 } /\ ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) : ( ( 1 ... N ) \ { ( I + 1 ) } ) --> { 0 } ) |
| 10 |
|
disjdif |
|- ( { ( I + 1 ) } i^i ( ( 1 ... N ) \ { ( I + 1 ) } ) ) = (/) |
| 11 |
|
fun |
|- ( ( ( { <. ( I + 1 ) , 1 >. } : { ( I + 1 ) } --> { 1 } /\ ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) : ( ( 1 ... N ) \ { ( I + 1 ) } ) --> { 0 } ) /\ ( { ( I + 1 ) } i^i ( ( 1 ... N ) \ { ( I + 1 ) } ) ) = (/) ) -> ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) : ( { ( I + 1 ) } u. ( ( 1 ... N ) \ { ( I + 1 ) } ) ) --> ( { 1 } u. { 0 } ) ) |
| 12 |
9 10 11
|
mp2an |
|- ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) : ( { ( I + 1 ) } u. ( ( 1 ... N ) \ { ( I + 1 ) } ) ) --> ( { 1 } u. { 0 } ) |
| 13 |
1
|
feq1i |
|- ( Q : ( { ( I + 1 ) } u. ( ( 1 ... N ) \ { ( I + 1 ) } ) ) --> ( { 1 } u. { 0 } ) <-> ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) : ( { ( I + 1 ) } u. ( ( 1 ... N ) \ { ( I + 1 ) } ) ) --> ( { 1 } u. { 0 } ) ) |
| 14 |
12 13
|
mpbir |
|- Q : ( { ( I + 1 ) } u. ( ( 1 ... N ) \ { ( I + 1 ) } ) ) --> ( { 1 } u. { 0 } ) |
| 15 |
|
1re |
|- 1 e. RR |
| 16 |
|
snssi |
|- ( 1 e. RR -> { 1 } C_ RR ) |
| 17 |
15 16
|
ax-mp |
|- { 1 } C_ RR |
| 18 |
|
0re |
|- 0 e. RR |
| 19 |
|
snssi |
|- ( 0 e. RR -> { 0 } C_ RR ) |
| 20 |
18 19
|
ax-mp |
|- { 0 } C_ RR |
| 21 |
17 20
|
unssi |
|- ( { 1 } u. { 0 } ) C_ RR |
| 22 |
|
fss |
|- ( ( Q : ( { ( I + 1 ) } u. ( ( 1 ... N ) \ { ( I + 1 ) } ) ) --> ( { 1 } u. { 0 } ) /\ ( { 1 } u. { 0 } ) C_ RR ) -> Q : ( { ( I + 1 ) } u. ( ( 1 ... N ) \ { ( I + 1 ) } ) ) --> RR ) |
| 23 |
14 21 22
|
mp2an |
|- Q : ( { ( I + 1 ) } u. ( ( 1 ... N ) \ { ( I + 1 ) } ) ) --> RR |
| 24 |
|
fznatpl1 |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> ( I + 1 ) e. ( 1 ... N ) ) |
| 25 |
24
|
snssd |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> { ( I + 1 ) } C_ ( 1 ... N ) ) |
| 26 |
|
undif |
|- ( { ( I + 1 ) } C_ ( 1 ... N ) <-> ( { ( I + 1 ) } u. ( ( 1 ... N ) \ { ( I + 1 ) } ) ) = ( 1 ... N ) ) |
| 27 |
25 26
|
sylib |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> ( { ( I + 1 ) } u. ( ( 1 ... N ) \ { ( I + 1 ) } ) ) = ( 1 ... N ) ) |
| 28 |
27
|
feq2d |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> ( Q : ( { ( I + 1 ) } u. ( ( 1 ... N ) \ { ( I + 1 ) } ) ) --> RR <-> Q : ( 1 ... N ) --> RR ) ) |
| 29 |
23 28
|
mpbii |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> Q : ( 1 ... N ) --> RR ) |
| 30 |
|
elee |
|- ( N e. NN -> ( Q e. ( EE ` N ) <-> Q : ( 1 ... N ) --> RR ) ) |
| 31 |
30
|
adantr |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> ( Q e. ( EE ` N ) <-> Q : ( 1 ... N ) --> RR ) ) |
| 32 |
29 31
|
mpbird |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> Q e. ( EE ` N ) ) |