| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axlowdimlem15.1 |
|- F = ( i e. ( 1 ... ( N - 1 ) ) |-> if ( i = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( i + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( i + 1 ) } ) X. { 0 } ) ) ) ) |
| 2 |
|
eqid |
|- ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) = ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) |
| 3 |
2
|
axlowdimlem7 |
|- ( N e. ( ZZ>= ` 3 ) -> ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) e. ( EE ` N ) ) |
| 4 |
3
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ i e. ( 1 ... ( N - 1 ) ) ) -> ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) e. ( EE ` N ) ) |
| 5 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
| 6 |
|
eqid |
|- ( { <. ( i + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( i + 1 ) } ) X. { 0 } ) ) = ( { <. ( i + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( i + 1 ) } ) X. { 0 } ) ) |
| 7 |
6
|
axlowdimlem10 |
|- ( ( N e. NN /\ i e. ( 1 ... ( N - 1 ) ) ) -> ( { <. ( i + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( i + 1 ) } ) X. { 0 } ) ) e. ( EE ` N ) ) |
| 8 |
5 7
|
sylan |
|- ( ( N e. ( ZZ>= ` 3 ) /\ i e. ( 1 ... ( N - 1 ) ) ) -> ( { <. ( i + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( i + 1 ) } ) X. { 0 } ) ) e. ( EE ` N ) ) |
| 9 |
4 8
|
ifcld |
|- ( ( N e. ( ZZ>= ` 3 ) /\ i e. ( 1 ... ( N - 1 ) ) ) -> if ( i = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( i + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( i + 1 ) } ) X. { 0 } ) ) ) e. ( EE ` N ) ) |
| 10 |
9 1
|
fmptd |
|- ( N e. ( ZZ>= ` 3 ) -> F : ( 1 ... ( N - 1 ) ) --> ( EE ` N ) ) |
| 11 |
|
eqeq1 |
|- ( i = j -> ( i = 1 <-> j = 1 ) ) |
| 12 |
|
oveq1 |
|- ( i = j -> ( i + 1 ) = ( j + 1 ) ) |
| 13 |
12
|
opeq1d |
|- ( i = j -> <. ( i + 1 ) , 1 >. = <. ( j + 1 ) , 1 >. ) |
| 14 |
13
|
sneqd |
|- ( i = j -> { <. ( i + 1 ) , 1 >. } = { <. ( j + 1 ) , 1 >. } ) |
| 15 |
12
|
sneqd |
|- ( i = j -> { ( i + 1 ) } = { ( j + 1 ) } ) |
| 16 |
15
|
difeq2d |
|- ( i = j -> ( ( 1 ... N ) \ { ( i + 1 ) } ) = ( ( 1 ... N ) \ { ( j + 1 ) } ) ) |
| 17 |
16
|
xpeq1d |
|- ( i = j -> ( ( ( 1 ... N ) \ { ( i + 1 ) } ) X. { 0 } ) = ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) |
| 18 |
14 17
|
uneq12d |
|- ( i = j -> ( { <. ( i + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( i + 1 ) } ) X. { 0 } ) ) = ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) |
| 19 |
11 18
|
ifbieq2d |
|- ( i = j -> if ( i = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( i + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( i + 1 ) } ) X. { 0 } ) ) ) = if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) ) |
| 20 |
|
snex |
|- { <. 3 , -u 1 >. } e. _V |
| 21 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 22 |
21
|
difexi |
|- ( ( 1 ... N ) \ { 3 } ) e. _V |
| 23 |
|
snex |
|- { 0 } e. _V |
| 24 |
22 23
|
xpex |
|- ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) e. _V |
| 25 |
20 24
|
unex |
|- ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) e. _V |
| 26 |
|
snex |
|- { <. ( j + 1 ) , 1 >. } e. _V |
| 27 |
21
|
difexi |
|- ( ( 1 ... N ) \ { ( j + 1 ) } ) e. _V |
| 28 |
27 23
|
xpex |
|- ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) e. _V |
| 29 |
26 28
|
unex |
|- ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) e. _V |
| 30 |
25 29
|
ifex |
|- if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) e. _V |
| 31 |
19 1 30
|
fvmpt |
|- ( j e. ( 1 ... ( N - 1 ) ) -> ( F ` j ) = if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) ) |
| 32 |
|
eqeq1 |
|- ( i = k -> ( i = 1 <-> k = 1 ) ) |
| 33 |
|
oveq1 |
|- ( i = k -> ( i + 1 ) = ( k + 1 ) ) |
| 34 |
33
|
opeq1d |
|- ( i = k -> <. ( i + 1 ) , 1 >. = <. ( k + 1 ) , 1 >. ) |
| 35 |
34
|
sneqd |
|- ( i = k -> { <. ( i + 1 ) , 1 >. } = { <. ( k + 1 ) , 1 >. } ) |
| 36 |
33
|
sneqd |
|- ( i = k -> { ( i + 1 ) } = { ( k + 1 ) } ) |
| 37 |
36
|
difeq2d |
|- ( i = k -> ( ( 1 ... N ) \ { ( i + 1 ) } ) = ( ( 1 ... N ) \ { ( k + 1 ) } ) ) |
| 38 |
37
|
xpeq1d |
|- ( i = k -> ( ( ( 1 ... N ) \ { ( i + 1 ) } ) X. { 0 } ) = ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) |
| 39 |
35 38
|
uneq12d |
|- ( i = k -> ( { <. ( i + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( i + 1 ) } ) X. { 0 } ) ) = ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) |
| 40 |
32 39
|
ifbieq2d |
|- ( i = k -> if ( i = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( i + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( i + 1 ) } ) X. { 0 } ) ) ) = if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) ) |
| 41 |
|
snex |
|- { <. ( k + 1 ) , 1 >. } e. _V |
| 42 |
21
|
difexi |
|- ( ( 1 ... N ) \ { ( k + 1 ) } ) e. _V |
| 43 |
42 23
|
xpex |
|- ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) e. _V |
| 44 |
41 43
|
unex |
|- ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) e. _V |
| 45 |
25 44
|
ifex |
|- if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) e. _V |
| 46 |
40 1 45
|
fvmpt |
|- ( k e. ( 1 ... ( N - 1 ) ) -> ( F ` k ) = if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) ) |
| 47 |
31 46
|
eqeqan12d |
|- ( ( j e. ( 1 ... ( N - 1 ) ) /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( F ` j ) = ( F ` k ) <-> if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) = if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) ) ) |
| 48 |
47
|
adantl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( j e. ( 1 ... ( N - 1 ) ) /\ k e. ( 1 ... ( N - 1 ) ) ) ) -> ( ( F ` j ) = ( F ` k ) <-> if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) = if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) ) ) |
| 49 |
|
eqtr3 |
|- ( ( j = 1 /\ k = 1 ) -> j = k ) |
| 50 |
49
|
2a1d |
|- ( ( j = 1 /\ k = 1 ) -> ( ( N e. ( ZZ>= ` 3 ) /\ ( j e. ( 1 ... ( N - 1 ) ) /\ k e. ( 1 ... ( N - 1 ) ) ) ) -> ( if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) = if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) -> j = k ) ) ) |
| 51 |
|
eqid |
|- ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) = ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) |
| 52 |
2 51
|
axlowdimlem13 |
|- ( ( N e. NN /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) =/= ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) |
| 53 |
52
|
neneqd |
|- ( ( N e. NN /\ k e. ( 1 ... ( N - 1 ) ) ) -> -. ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) = ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) |
| 54 |
53
|
pm2.21d |
|- ( ( N e. NN /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) = ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) -> j = k ) ) |
| 55 |
54
|
adantrl |
|- ( ( N e. NN /\ ( j e. ( 1 ... ( N - 1 ) ) /\ k e. ( 1 ... ( N - 1 ) ) ) ) -> ( ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) = ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) -> j = k ) ) |
| 56 |
5 55
|
sylan |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( j e. ( 1 ... ( N - 1 ) ) /\ k e. ( 1 ... ( N - 1 ) ) ) ) -> ( ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) = ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) -> j = k ) ) |
| 57 |
|
iftrue |
|- ( j = 1 -> if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) = ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) ) |
| 58 |
|
iffalse |
|- ( -. k = 1 -> if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) = ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) |
| 59 |
57 58
|
eqeqan12d |
|- ( ( j = 1 /\ -. k = 1 ) -> ( if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) = if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) <-> ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) = ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) ) |
| 60 |
59
|
imbi1d |
|- ( ( j = 1 /\ -. k = 1 ) -> ( ( if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) = if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) -> j = k ) <-> ( ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) = ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) -> j = k ) ) ) |
| 61 |
56 60
|
imbitrrid |
|- ( ( j = 1 /\ -. k = 1 ) -> ( ( N e. ( ZZ>= ` 3 ) /\ ( j e. ( 1 ... ( N - 1 ) ) /\ k e. ( 1 ... ( N - 1 ) ) ) ) -> ( if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) = if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) -> j = k ) ) ) |
| 62 |
|
eqid |
|- ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) = ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) |
| 63 |
2 62
|
axlowdimlem13 |
|- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) =/= ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) |
| 64 |
63
|
necomd |
|- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) =/= ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) ) |
| 65 |
64
|
neneqd |
|- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> -. ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) = ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) ) |
| 66 |
65
|
pm2.21d |
|- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) = ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) -> j = k ) ) |
| 67 |
5 66
|
sylan |
|- ( ( N e. ( ZZ>= ` 3 ) /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) = ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) -> j = k ) ) |
| 68 |
67
|
adantrr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( j e. ( 1 ... ( N - 1 ) ) /\ k e. ( 1 ... ( N - 1 ) ) ) ) -> ( ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) = ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) -> j = k ) ) |
| 69 |
|
iffalse |
|- ( -. j = 1 -> if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) = ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) |
| 70 |
|
iftrue |
|- ( k = 1 -> if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) = ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) ) |
| 71 |
69 70
|
eqeqan12d |
|- ( ( -. j = 1 /\ k = 1 ) -> ( if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) = if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) <-> ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) = ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) ) ) |
| 72 |
71
|
imbi1d |
|- ( ( -. j = 1 /\ k = 1 ) -> ( ( if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) = if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) -> j = k ) <-> ( ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) = ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) -> j = k ) ) ) |
| 73 |
68 72
|
imbitrrid |
|- ( ( -. j = 1 /\ k = 1 ) -> ( ( N e. ( ZZ>= ` 3 ) /\ ( j e. ( 1 ... ( N - 1 ) ) /\ k e. ( 1 ... ( N - 1 ) ) ) ) -> ( if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) = if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) -> j = k ) ) ) |
| 74 |
62 51
|
axlowdimlem14 |
|- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) = ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) -> j = k ) ) |
| 75 |
74
|
3expb |
|- ( ( N e. NN /\ ( j e. ( 1 ... ( N - 1 ) ) /\ k e. ( 1 ... ( N - 1 ) ) ) ) -> ( ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) = ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) -> j = k ) ) |
| 76 |
5 75
|
sylan |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( j e. ( 1 ... ( N - 1 ) ) /\ k e. ( 1 ... ( N - 1 ) ) ) ) -> ( ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) = ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) -> j = k ) ) |
| 77 |
69 58
|
eqeqan12d |
|- ( ( -. j = 1 /\ -. k = 1 ) -> ( if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) = if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) <-> ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) = ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) ) |
| 78 |
77
|
imbi1d |
|- ( ( -. j = 1 /\ -. k = 1 ) -> ( ( if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) = if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) -> j = k ) <-> ( ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) = ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) -> j = k ) ) ) |
| 79 |
76 78
|
imbitrrid |
|- ( ( -. j = 1 /\ -. k = 1 ) -> ( ( N e. ( ZZ>= ` 3 ) /\ ( j e. ( 1 ... ( N - 1 ) ) /\ k e. ( 1 ... ( N - 1 ) ) ) ) -> ( if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) = if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) -> j = k ) ) ) |
| 80 |
50 61 73 79
|
4cases |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( j e. ( 1 ... ( N - 1 ) ) /\ k e. ( 1 ... ( N - 1 ) ) ) ) -> ( if ( j = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( j + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( j + 1 ) } ) X. { 0 } ) ) ) = if ( k = 1 , ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) , ( { <. ( k + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( k + 1 ) } ) X. { 0 } ) ) ) -> j = k ) ) |
| 81 |
48 80
|
sylbid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ ( j e. ( 1 ... ( N - 1 ) ) /\ k e. ( 1 ... ( N - 1 ) ) ) ) -> ( ( F ` j ) = ( F ` k ) -> j = k ) ) |
| 82 |
81
|
ralrimivva |
|- ( N e. ( ZZ>= ` 3 ) -> A. j e. ( 1 ... ( N - 1 ) ) A. k e. ( 1 ... ( N - 1 ) ) ( ( F ` j ) = ( F ` k ) -> j = k ) ) |
| 83 |
|
dff13 |
|- ( F : ( 1 ... ( N - 1 ) ) -1-1-> ( EE ` N ) <-> ( F : ( 1 ... ( N - 1 ) ) --> ( EE ` N ) /\ A. j e. ( 1 ... ( N - 1 ) ) A. k e. ( 1 ... ( N - 1 ) ) ( ( F ` j ) = ( F ` k ) -> j = k ) ) ) |
| 84 |
10 82 83
|
sylanbrc |
|- ( N e. ( ZZ>= ` 3 ) -> F : ( 1 ... ( N - 1 ) ) -1-1-> ( EE ` N ) ) |