| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axlowdimlem16.1 |
|- P = ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) |
| 2 |
|
axlowdimlem16.2 |
|- Q = ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) |
| 3 |
|
elfz1eq |
|- ( I e. ( 2 ... 2 ) -> I = 2 ) |
| 4 |
|
3z |
|- 3 e. ZZ |
| 5 |
|
ax-1cn |
|- 1 e. CC |
| 6 |
5
|
sqcli |
|- ( 1 ^ 2 ) e. CC |
| 7 |
|
fveq2 |
|- ( i = 3 -> ( P ` i ) = ( P ` 3 ) ) |
| 8 |
1
|
axlowdimlem8 |
|- ( P ` 3 ) = -u 1 |
| 9 |
7 8
|
eqtrdi |
|- ( i = 3 -> ( P ` i ) = -u 1 ) |
| 10 |
9
|
oveq1d |
|- ( i = 3 -> ( ( P ` i ) ^ 2 ) = ( -u 1 ^ 2 ) ) |
| 11 |
|
sqneg |
|- ( 1 e. CC -> ( -u 1 ^ 2 ) = ( 1 ^ 2 ) ) |
| 12 |
5 11
|
ax-mp |
|- ( -u 1 ^ 2 ) = ( 1 ^ 2 ) |
| 13 |
10 12
|
eqtrdi |
|- ( i = 3 -> ( ( P ` i ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 14 |
13
|
fsum1 |
|- ( ( 3 e. ZZ /\ ( 1 ^ 2 ) e. CC ) -> sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 15 |
4 6 14
|
mp2an |
|- sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = ( 1 ^ 2 ) |
| 16 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 17 |
|
oveq1 |
|- ( I = 2 -> ( I + 1 ) = ( 2 + 1 ) ) |
| 18 |
16 17
|
eqtr4id |
|- ( I = 2 -> 3 = ( I + 1 ) ) |
| 19 |
18 18
|
oveq12d |
|- ( I = 2 -> ( 3 ... 3 ) = ( ( I + 1 ) ... ( I + 1 ) ) ) |
| 20 |
19
|
sumeq1d |
|- ( I = 2 -> sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) ) |
| 21 |
17 16
|
eqtr4di |
|- ( I = 2 -> ( I + 1 ) = 3 ) |
| 22 |
21 4
|
eqeltrdi |
|- ( I = 2 -> ( I + 1 ) e. ZZ ) |
| 23 |
|
fveq2 |
|- ( i = ( I + 1 ) -> ( Q ` i ) = ( Q ` ( I + 1 ) ) ) |
| 24 |
2
|
axlowdimlem11 |
|- ( Q ` ( I + 1 ) ) = 1 |
| 25 |
23 24
|
eqtrdi |
|- ( i = ( I + 1 ) -> ( Q ` i ) = 1 ) |
| 26 |
25
|
oveq1d |
|- ( i = ( I + 1 ) -> ( ( Q ` i ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 27 |
26
|
fsum1 |
|- ( ( ( I + 1 ) e. ZZ /\ ( 1 ^ 2 ) e. CC ) -> sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 28 |
22 6 27
|
sylancl |
|- ( I = 2 -> sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 29 |
20 28
|
eqtrd |
|- ( I = 2 -> sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 30 |
15 29
|
eqtr4id |
|- ( I = 2 -> sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) ) |
| 31 |
3 30
|
syl |
|- ( I e. ( 2 ... 2 ) -> sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) ) |
| 32 |
31
|
a1i |
|- ( N = 3 -> ( I e. ( 2 ... 2 ) -> sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) ) ) |
| 33 |
|
oveq1 |
|- ( N = 3 -> ( N - 1 ) = ( 3 - 1 ) ) |
| 34 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
| 35 |
33 34
|
eqtrdi |
|- ( N = 3 -> ( N - 1 ) = 2 ) |
| 36 |
35
|
oveq2d |
|- ( N = 3 -> ( 2 ... ( N - 1 ) ) = ( 2 ... 2 ) ) |
| 37 |
36
|
eleq2d |
|- ( N = 3 -> ( I e. ( 2 ... ( N - 1 ) ) <-> I e. ( 2 ... 2 ) ) ) |
| 38 |
|
oveq2 |
|- ( N = 3 -> ( 3 ... N ) = ( 3 ... 3 ) ) |
| 39 |
38
|
sumeq1d |
|- ( N = 3 -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) ) |
| 40 |
38
|
sumeq1d |
|- ( N = 3 -> sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) ) |
| 41 |
39 40
|
eqeq12d |
|- ( N = 3 -> ( sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) <-> sum_ i e. ( 3 ... 3 ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... 3 ) ( ( Q ` i ) ^ 2 ) ) ) |
| 42 |
32 37 41
|
3imtr4d |
|- ( N = 3 -> ( I e. ( 2 ... ( N - 1 ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) ) |
| 43 |
42
|
adantld |
|- ( N = 3 -> ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) ) |
| 44 |
|
simprl |
|- ( ( N =/= 3 /\ ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. ( ZZ>= ` 3 ) ) |
| 45 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
| 46 |
45
|
adantl |
|- ( ( N =/= 3 /\ N e. ( ZZ>= ` 3 ) ) -> 3 <_ N ) |
| 47 |
|
simpl |
|- ( ( N =/= 3 /\ N e. ( ZZ>= ` 3 ) ) -> N =/= 3 ) |
| 48 |
|
3re |
|- 3 e. RR |
| 49 |
|
eluzelre |
|- ( N e. ( ZZ>= ` 3 ) -> N e. RR ) |
| 50 |
49
|
adantl |
|- ( ( N =/= 3 /\ N e. ( ZZ>= ` 3 ) ) -> N e. RR ) |
| 51 |
|
ltlen |
|- ( ( 3 e. RR /\ N e. RR ) -> ( 3 < N <-> ( 3 <_ N /\ N =/= 3 ) ) ) |
| 52 |
48 50 51
|
sylancr |
|- ( ( N =/= 3 /\ N e. ( ZZ>= ` 3 ) ) -> ( 3 < N <-> ( 3 <_ N /\ N =/= 3 ) ) ) |
| 53 |
46 47 52
|
mpbir2and |
|- ( ( N =/= 3 /\ N e. ( ZZ>= ` 3 ) ) -> 3 < N ) |
| 54 |
53
|
adantrr |
|- ( ( N =/= 3 /\ ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> 3 < N ) |
| 55 |
|
simprr |
|- ( ( N =/= 3 /\ ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I e. ( 2 ... ( N - 1 ) ) ) |
| 56 |
|
fzssp1 |
|- ( 2 ... ( N - 1 ) ) C_ ( 2 ... ( ( N - 1 ) + 1 ) ) |
| 57 |
|
simp3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. ( 2 ... ( N - 1 ) ) ) |
| 58 |
56 57
|
sselid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. ( 2 ... ( ( N - 1 ) + 1 ) ) ) |
| 59 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
| 60 |
59
|
3ad2ant1 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. ZZ ) |
| 61 |
60
|
zcnd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. CC ) |
| 62 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
| 63 |
61 5 62
|
sylancl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) |
| 64 |
63
|
oveq2d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 2 ... ( ( N - 1 ) + 1 ) ) = ( 2 ... N ) ) |
| 65 |
58 64
|
eleqtrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. ( 2 ... N ) ) |
| 66 |
|
elfzelz |
|- ( I e. ( 2 ... N ) -> I e. ZZ ) |
| 67 |
65 66
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. ZZ ) |
| 68 |
67
|
zred |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. RR ) |
| 69 |
68
|
ltp1d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I < ( I + 1 ) ) |
| 70 |
|
fzdisj |
|- ( I < ( I + 1 ) -> ( ( 2 ... I ) i^i ( ( I + 1 ) ... N ) ) = (/) ) |
| 71 |
69 70
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( 2 ... I ) i^i ( ( I + 1 ) ... N ) ) = (/) ) |
| 72 |
|
fzsplit |
|- ( I e. ( 2 ... N ) -> ( 2 ... N ) = ( ( 2 ... I ) u. ( ( I + 1 ) ... N ) ) ) |
| 73 |
65 72
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 2 ... N ) = ( ( 2 ... I ) u. ( ( I + 1 ) ... N ) ) ) |
| 74 |
|
fzfid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 2 ... N ) e. Fin ) |
| 75 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
| 76 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
| 77 |
|
fzss1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... ( N - 1 ) ) C_ ( 1 ... ( N - 1 ) ) ) |
| 78 |
76 77
|
ax-mp |
|- ( 2 ... ( N - 1 ) ) C_ ( 1 ... ( N - 1 ) ) |
| 79 |
78
|
sseli |
|- ( I e. ( 2 ... ( N - 1 ) ) -> I e. ( 1 ... ( N - 1 ) ) ) |
| 80 |
2
|
axlowdimlem10 |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> Q e. ( EE ` N ) ) |
| 81 |
75 79 80
|
syl2an |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> Q e. ( EE ` N ) ) |
| 82 |
|
fzss1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... N ) C_ ( 1 ... N ) ) |
| 83 |
76 82
|
ax-mp |
|- ( 2 ... N ) C_ ( 1 ... N ) |
| 84 |
83
|
sseli |
|- ( i e. ( 2 ... N ) -> i e. ( 1 ... N ) ) |
| 85 |
|
fveecn |
|- ( ( Q e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( Q ` i ) e. CC ) |
| 86 |
81 84 85
|
syl2an |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... N ) ) -> ( Q ` i ) e. CC ) |
| 87 |
86
|
sqcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... N ) ) -> ( ( Q ` i ) ^ 2 ) e. CC ) |
| 88 |
87
|
3adantl2 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... N ) ) -> ( ( Q ` i ) ^ 2 ) e. CC ) |
| 89 |
71 73 74 88
|
fsumsplit |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 2 ... N ) ( ( Q ` i ) ^ 2 ) = ( sum_ i e. ( 2 ... I ) ( ( Q ` i ) ^ 2 ) + sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) ) |
| 90 |
|
elfzelz |
|- ( I e. ( 2 ... ( N - 1 ) ) -> I e. ZZ ) |
| 91 |
90
|
zred |
|- ( I e. ( 2 ... ( N - 1 ) ) -> I e. RR ) |
| 92 |
91
|
3ad2ant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. RR ) |
| 93 |
49
|
3ad2ant1 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. RR ) |
| 94 |
|
peano2rem |
|- ( N e. RR -> ( N - 1 ) e. RR ) |
| 95 |
93 94
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( N - 1 ) e. RR ) |
| 96 |
|
elfzle2 |
|- ( I e. ( 2 ... ( N - 1 ) ) -> I <_ ( N - 1 ) ) |
| 97 |
96
|
3ad2ant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I <_ ( N - 1 ) ) |
| 98 |
93
|
ltm1d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( N - 1 ) < N ) |
| 99 |
92 95 93 97 98
|
lelttrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I < N ) |
| 100 |
92 93 99
|
ltled |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I <_ N ) |
| 101 |
90
|
3ad2ant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> I e. ZZ ) |
| 102 |
|
eluz |
|- ( ( I e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` I ) <-> I <_ N ) ) |
| 103 |
101 60 102
|
syl2anc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( N e. ( ZZ>= ` I ) <-> I <_ N ) ) |
| 104 |
100 103
|
mpbird |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` I ) ) |
| 105 |
|
fzss2 |
|- ( N e. ( ZZ>= ` I ) -> ( 1 ... I ) C_ ( 1 ... N ) ) |
| 106 |
104 105
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 1 ... I ) C_ ( 1 ... N ) ) |
| 107 |
106
|
sseld |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( i e. ( 1 ... I ) -> i e. ( 1 ... N ) ) ) |
| 108 |
|
fzss1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... I ) C_ ( 1 ... I ) ) |
| 109 |
76 108
|
ax-mp |
|- ( 2 ... I ) C_ ( 1 ... I ) |
| 110 |
109
|
sseli |
|- ( i e. ( 2 ... I ) -> i e. ( 1 ... I ) ) |
| 111 |
107 110
|
impel |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> i e. ( 1 ... N ) ) |
| 112 |
|
elfzelz |
|- ( i e. ( 2 ... I ) -> i e. ZZ ) |
| 113 |
112
|
zred |
|- ( i e. ( 2 ... I ) -> i e. RR ) |
| 114 |
113
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> i e. RR ) |
| 115 |
92
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> I e. RR ) |
| 116 |
|
peano2re |
|- ( I e. RR -> ( I + 1 ) e. RR ) |
| 117 |
91 116
|
syl |
|- ( I e. ( 2 ... ( N - 1 ) ) -> ( I + 1 ) e. RR ) |
| 118 |
117
|
3ad2ant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( I + 1 ) e. RR ) |
| 119 |
118
|
adantr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> ( I + 1 ) e. RR ) |
| 120 |
|
elfzle2 |
|- ( i e. ( 2 ... I ) -> i <_ I ) |
| 121 |
120
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> i <_ I ) |
| 122 |
115
|
ltp1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> I < ( I + 1 ) ) |
| 123 |
114 115 119 121 122
|
lelttrd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> i < ( I + 1 ) ) |
| 124 |
114 123
|
ltned |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> i =/= ( I + 1 ) ) |
| 125 |
2
|
axlowdimlem12 |
|- ( ( i e. ( 1 ... N ) /\ i =/= ( I + 1 ) ) -> ( Q ` i ) = 0 ) |
| 126 |
111 124 125
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> ( Q ` i ) = 0 ) |
| 127 |
126
|
sq0id |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 2 ... I ) ) -> ( ( Q ` i ) ^ 2 ) = 0 ) |
| 128 |
127
|
sumeq2dv |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 2 ... I ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( 2 ... I ) 0 ) |
| 129 |
|
fzfi |
|- ( 2 ... I ) e. Fin |
| 130 |
129
|
olci |
|- ( ( 2 ... I ) C_ ( ZZ>= ` 1 ) \/ ( 2 ... I ) e. Fin ) |
| 131 |
|
sumz |
|- ( ( ( 2 ... I ) C_ ( ZZ>= ` 1 ) \/ ( 2 ... I ) e. Fin ) -> sum_ i e. ( 2 ... I ) 0 = 0 ) |
| 132 |
130 131
|
ax-mp |
|- sum_ i e. ( 2 ... I ) 0 = 0 |
| 133 |
128 132
|
eqtrdi |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 2 ... I ) ( ( Q ` i ) ^ 2 ) = 0 ) |
| 134 |
101
|
peano2zd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( I + 1 ) e. ZZ ) |
| 135 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 136 |
26 135
|
eqtrdi |
|- ( i = ( I + 1 ) -> ( ( Q ` i ) ^ 2 ) = 1 ) |
| 137 |
136
|
fsum1 |
|- ( ( ( I + 1 ) e. ZZ /\ 1 e. CC ) -> sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = 1 ) |
| 138 |
134 5 137
|
sylancl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = 1 ) |
| 139 |
|
oveq2 |
|- ( ( I + 1 ) = N -> ( ( I + 1 ) ... ( I + 1 ) ) = ( ( I + 1 ) ... N ) ) |
| 140 |
139
|
sumeq1d |
|- ( ( I + 1 ) = N -> sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) |
| 141 |
140
|
eqeq1d |
|- ( ( I + 1 ) = N -> ( sum_ i e. ( ( I + 1 ) ... ( I + 1 ) ) ( ( Q ` i ) ^ 2 ) = 1 <-> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) ) |
| 142 |
138 141
|
imbitrid |
|- ( ( I + 1 ) = N -> ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) ) |
| 143 |
101
|
adantl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I e. ZZ ) |
| 144 |
143
|
zred |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I e. RR ) |
| 145 |
60
|
adantl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. ZZ ) |
| 146 |
145
|
zred |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. RR ) |
| 147 |
146 94
|
syl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( N - 1 ) e. RR ) |
| 148 |
97
|
adantl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I <_ ( N - 1 ) ) |
| 149 |
146
|
ltm1d |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( N - 1 ) < N ) |
| 150 |
144 147 146 148 149
|
lelttrd |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I < N ) |
| 151 |
|
1red |
|- ( I e. ( 2 ... ( N - 1 ) ) -> 1 e. RR ) |
| 152 |
|
2re |
|- 2 e. RR |
| 153 |
152
|
a1i |
|- ( I e. ( 2 ... ( N - 1 ) ) -> 2 e. RR ) |
| 154 |
|
1le2 |
|- 1 <_ 2 |
| 155 |
154
|
a1i |
|- ( I e. ( 2 ... ( N - 1 ) ) -> 1 <_ 2 ) |
| 156 |
|
elfzle1 |
|- ( I e. ( 2 ... ( N - 1 ) ) -> 2 <_ I ) |
| 157 |
151 153 91 155 156
|
letrd |
|- ( I e. ( 2 ... ( N - 1 ) ) -> 1 <_ I ) |
| 158 |
157
|
3ad2ant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> 1 <_ I ) |
| 159 |
158
|
adantl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> 1 <_ I ) |
| 160 |
|
elnnz1 |
|- ( I e. NN <-> ( I e. ZZ /\ 1 <_ I ) ) |
| 161 |
143 159 160
|
sylanbrc |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I e. NN ) |
| 162 |
75
|
3ad2ant1 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. NN ) |
| 163 |
162
|
adantl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. NN ) |
| 164 |
|
nnltp1le |
|- ( ( I e. NN /\ N e. NN ) -> ( I < N <-> ( I + 1 ) <_ N ) ) |
| 165 |
161 163 164
|
syl2anc |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( I < N <-> ( I + 1 ) <_ N ) ) |
| 166 |
150 165
|
mpbid |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( I + 1 ) <_ N ) |
| 167 |
|
eluz |
|- ( ( ( I + 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( I + 1 ) ) <-> ( I + 1 ) <_ N ) ) |
| 168 |
134 145 167
|
syl2an2 |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( N e. ( ZZ>= ` ( I + 1 ) ) <-> ( I + 1 ) <_ N ) ) |
| 169 |
166 168
|
mpbird |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. ( ZZ>= ` ( I + 1 ) ) ) |
| 170 |
|
simpr1 |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> N e. ( ZZ>= ` 3 ) ) |
| 171 |
|
simpr3 |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> I e. ( 2 ... ( N - 1 ) ) ) |
| 172 |
170 171 81
|
syl2anc |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> Q e. ( EE ` N ) ) |
| 173 |
172
|
adantr |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( I + 1 ) ... N ) ) -> Q e. ( EE ` N ) ) |
| 174 |
161
|
peano2nnd |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( I + 1 ) e. NN ) |
| 175 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 176 |
174 175
|
eleqtrdi |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( I + 1 ) e. ( ZZ>= ` 1 ) ) |
| 177 |
|
fzss1 |
|- ( ( I + 1 ) e. ( ZZ>= ` 1 ) -> ( ( I + 1 ) ... N ) C_ ( 1 ... N ) ) |
| 178 |
176 177
|
syl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( ( I + 1 ) ... N ) C_ ( 1 ... N ) ) |
| 179 |
178
|
sselda |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( I + 1 ) ... N ) ) -> i e. ( 1 ... N ) ) |
| 180 |
173 179 85
|
syl2anc |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( I + 1 ) ... N ) ) -> ( Q ` i ) e. CC ) |
| 181 |
180
|
sqcld |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( I + 1 ) ... N ) ) -> ( ( Q ` i ) ^ 2 ) e. CC ) |
| 182 |
23
|
oveq1d |
|- ( i = ( I + 1 ) -> ( ( Q ` i ) ^ 2 ) = ( ( Q ` ( I + 1 ) ) ^ 2 ) ) |
| 183 |
24
|
oveq1i |
|- ( ( Q ` ( I + 1 ) ) ^ 2 ) = ( 1 ^ 2 ) |
| 184 |
183 135
|
eqtri |
|- ( ( Q ` ( I + 1 ) ) ^ 2 ) = 1 |
| 185 |
182 184
|
eqtrdi |
|- ( i = ( I + 1 ) -> ( ( Q ` i ) ^ 2 ) = 1 ) |
| 186 |
169 181 185
|
fsum1p |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = ( 1 + sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) ) |
| 187 |
174
|
peano2nnd |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( ( I + 1 ) + 1 ) e. NN ) |
| 188 |
187 175
|
eleqtrdi |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( ( I + 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 189 |
|
fzss1 |
|- ( ( ( I + 1 ) + 1 ) e. ( ZZ>= ` 1 ) -> ( ( ( I + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) ) |
| 190 |
188 189
|
syl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( ( ( I + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) ) |
| 191 |
190
|
sselda |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> i e. ( 1 ... N ) ) |
| 192 |
144 116
|
syl |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( I + 1 ) e. RR ) |
| 193 |
192
|
adantr |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( I + 1 ) e. RR ) |
| 194 |
|
peano2re |
|- ( ( I + 1 ) e. RR -> ( ( I + 1 ) + 1 ) e. RR ) |
| 195 |
193 194
|
syl |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( ( I + 1 ) + 1 ) e. RR ) |
| 196 |
|
elfzelz |
|- ( i e. ( ( ( I + 1 ) + 1 ) ... N ) -> i e. ZZ ) |
| 197 |
196
|
zred |
|- ( i e. ( ( ( I + 1 ) + 1 ) ... N ) -> i e. RR ) |
| 198 |
197
|
adantl |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> i e. RR ) |
| 199 |
193
|
ltp1d |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( I + 1 ) < ( ( I + 1 ) + 1 ) ) |
| 200 |
|
elfzle1 |
|- ( i e. ( ( ( I + 1 ) + 1 ) ... N ) -> ( ( I + 1 ) + 1 ) <_ i ) |
| 201 |
200
|
adantl |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( ( I + 1 ) + 1 ) <_ i ) |
| 202 |
193 195 198 199 201
|
ltletrd |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( I + 1 ) < i ) |
| 203 |
193 202
|
gtned |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> i =/= ( I + 1 ) ) |
| 204 |
191 203 125
|
syl2anc |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( Q ` i ) = 0 ) |
| 205 |
204
|
sq0id |
|- ( ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) /\ i e. ( ( ( I + 1 ) + 1 ) ... N ) ) -> ( ( Q ` i ) ^ 2 ) = 0 ) |
| 206 |
205
|
sumeq2dv |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) 0 ) |
| 207 |
|
fzfi |
|- ( ( ( I + 1 ) + 1 ) ... N ) e. Fin |
| 208 |
207
|
olci |
|- ( ( ( ( I + 1 ) + 1 ) ... N ) C_ ( ZZ>= ` 1 ) \/ ( ( ( I + 1 ) + 1 ) ... N ) e. Fin ) |
| 209 |
|
sumz |
|- ( ( ( ( ( I + 1 ) + 1 ) ... N ) C_ ( ZZ>= ` 1 ) \/ ( ( ( I + 1 ) + 1 ) ... N ) e. Fin ) -> sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) 0 = 0 ) |
| 210 |
208 209
|
ax-mp |
|- sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) 0 = 0 |
| 211 |
206 210
|
eqtrdi |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 0 ) |
| 212 |
211
|
oveq2d |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( 1 + sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = ( 1 + 0 ) ) |
| 213 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
| 214 |
212 213
|
eqtrdi |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> ( 1 + sum_ i e. ( ( ( I + 1 ) + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = 1 ) |
| 215 |
186 214
|
eqtrd |
|- ( ( ( I + 1 ) =/= N /\ ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) |
| 216 |
215
|
ex |
|- ( ( I + 1 ) =/= N -> ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) ) |
| 217 |
142 216
|
pm2.61ine |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) |
| 218 |
133 217
|
oveq12d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( sum_ i e. ( 2 ... I ) ( ( Q ` i ) ^ 2 ) + sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = ( 0 + 1 ) ) |
| 219 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 220 |
218 219
|
eqtrdi |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( sum_ i e. ( 2 ... I ) ( ( Q ` i ) ^ 2 ) + sum_ i e. ( ( I + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = 1 ) |
| 221 |
89 220
|
eqtrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 2 ... N ) ( ( Q ` i ) ^ 2 ) = 1 ) |
| 222 |
|
simp1 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` 3 ) ) |
| 223 |
|
2lt3 |
|- 2 < 3 |
| 224 |
152 48 223
|
ltleii |
|- 2 <_ 3 |
| 225 |
|
2z |
|- 2 e. ZZ |
| 226 |
225
|
eluz1i |
|- ( 3 e. ( ZZ>= ` 2 ) <-> ( 3 e. ZZ /\ 2 <_ 3 ) ) |
| 227 |
4 224 226
|
mpbir2an |
|- 3 e. ( ZZ>= ` 2 ) |
| 228 |
|
uztrn |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 e. ( ZZ>= ` 2 ) ) -> N e. ( ZZ>= ` 2 ) ) |
| 229 |
222 227 228
|
sylancl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` 2 ) ) |
| 230 |
|
fveq2 |
|- ( i = 2 -> ( Q ` i ) = ( Q ` 2 ) ) |
| 231 |
230
|
oveq1d |
|- ( i = 2 -> ( ( Q ` i ) ^ 2 ) = ( ( Q ` 2 ) ^ 2 ) ) |
| 232 |
229 88 231
|
fsum1p |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 2 ... N ) ( ( Q ` i ) ^ 2 ) = ( ( ( Q ` 2 ) ^ 2 ) + sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) ) |
| 233 |
59
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> N e. ZZ ) |
| 234 |
233
|
zred |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> N e. RR ) |
| 235 |
|
lttr |
|- ( ( 2 e. RR /\ 3 e. RR /\ N e. RR ) -> ( ( 2 < 3 /\ 3 < N ) -> 2 < N ) ) |
| 236 |
152 48 235
|
mp3an12 |
|- ( N e. RR -> ( ( 2 < 3 /\ 3 < N ) -> 2 < N ) ) |
| 237 |
223 236
|
mpani |
|- ( N e. RR -> ( 3 < N -> 2 < N ) ) |
| 238 |
49 237
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> ( 3 < N -> 2 < N ) ) |
| 239 |
238
|
imp |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> 2 < N ) |
| 240 |
|
ltle |
|- ( ( 2 e. RR /\ N e. RR ) -> ( 2 < N -> 2 <_ N ) ) |
| 241 |
152 240
|
mpan |
|- ( N e. RR -> ( 2 < N -> 2 <_ N ) ) |
| 242 |
234 239 241
|
sylc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> 2 <_ N ) |
| 243 |
242 154
|
jctil |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( 1 <_ 2 /\ 2 <_ N ) ) |
| 244 |
|
1z |
|- 1 e. ZZ |
| 245 |
|
elfz |
|- ( ( 2 e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( 2 e. ( 1 ... N ) <-> ( 1 <_ 2 /\ 2 <_ N ) ) ) |
| 246 |
225 244 233 245
|
mp3an12i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( 2 e. ( 1 ... N ) <-> ( 1 <_ 2 /\ 2 <_ N ) ) ) |
| 247 |
243 246
|
mpbird |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> 2 e. ( 1 ... N ) ) |
| 248 |
247
|
3adant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> 2 e. ( 1 ... N ) ) |
| 249 |
91
|
ltp1d |
|- ( I e. ( 2 ... ( N - 1 ) ) -> I < ( I + 1 ) ) |
| 250 |
153 91 117 156 249
|
lelttrd |
|- ( I e. ( 2 ... ( N - 1 ) ) -> 2 < ( I + 1 ) ) |
| 251 |
250
|
3ad2ant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> 2 < ( I + 1 ) ) |
| 252 |
|
ltne |
|- ( ( 2 e. RR /\ 2 < ( I + 1 ) ) -> ( I + 1 ) =/= 2 ) |
| 253 |
152 251 252
|
sylancr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( I + 1 ) =/= 2 ) |
| 254 |
253
|
necomd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> 2 =/= ( I + 1 ) ) |
| 255 |
2
|
axlowdimlem12 |
|- ( ( 2 e. ( 1 ... N ) /\ 2 =/= ( I + 1 ) ) -> ( Q ` 2 ) = 0 ) |
| 256 |
248 254 255
|
syl2anc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( Q ` 2 ) = 0 ) |
| 257 |
256
|
sq0id |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( Q ` 2 ) ^ 2 ) = 0 ) |
| 258 |
257
|
oveq1d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( ( Q ` 2 ) ^ 2 ) + sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = ( 0 + sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) ) |
| 259 |
16
|
oveq1i |
|- ( 3 ... N ) = ( ( 2 + 1 ) ... N ) |
| 260 |
259
|
sumeq1i |
|- sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) |
| 261 |
260
|
oveq2i |
|- ( 0 + sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) = ( 0 + sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) |
| 262 |
258 261
|
eqtr4di |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( ( Q ` 2 ) ^ 2 ) + sum_ i e. ( ( 2 + 1 ) ... N ) ( ( Q ` i ) ^ 2 ) ) = ( 0 + sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) ) |
| 263 |
|
fzfid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 3 ... N ) e. Fin ) |
| 264 |
|
3nn |
|- 3 e. NN |
| 265 |
264 175
|
eleqtri |
|- 3 e. ( ZZ>= ` 1 ) |
| 266 |
|
fzss1 |
|- ( 3 e. ( ZZ>= ` 1 ) -> ( 3 ... N ) C_ ( 1 ... N ) ) |
| 267 |
265 266
|
ax-mp |
|- ( 3 ... N ) C_ ( 1 ... N ) |
| 268 |
267
|
sseli |
|- ( i e. ( 3 ... N ) -> i e. ( 1 ... N ) ) |
| 269 |
81 268 85
|
syl2an |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( Q ` i ) e. CC ) |
| 270 |
269
|
sqcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( Q ` i ) ^ 2 ) e. CC ) |
| 271 |
270
|
3adantl2 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( Q ` i ) ^ 2 ) e. CC ) |
| 272 |
263 271
|
fsumcl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) e. CC ) |
| 273 |
272
|
addlidd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 0 + sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) |
| 274 |
232 262 273
|
3eqtrrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) = sum_ i e. ( 2 ... N ) ( ( Q ` i ) ^ 2 ) ) |
| 275 |
|
simpl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> N e. ( ZZ>= ` 3 ) ) |
| 276 |
1
|
axlowdimlem7 |
|- ( N e. ( ZZ>= ` 3 ) -> P e. ( EE ` N ) ) |
| 277 |
276
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( 3 ... N ) ) -> P e. ( EE ` N ) ) |
| 278 |
268
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( 3 ... N ) ) -> i e. ( 1 ... N ) ) |
| 279 |
|
fveecn |
|- ( ( P e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( P ` i ) e. CC ) |
| 280 |
277 278 279
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( 3 ... N ) ) -> ( P ` i ) e. CC ) |
| 281 |
280
|
sqcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( 3 ... N ) ) -> ( ( P ` i ) ^ 2 ) e. CC ) |
| 282 |
|
neg1sqe1 |
|- ( -u 1 ^ 2 ) = 1 |
| 283 |
10 282
|
eqtrdi |
|- ( i = 3 -> ( ( P ` i ) ^ 2 ) = 1 ) |
| 284 |
275 281 283
|
fsum1p |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = ( 1 + sum_ i e. ( ( 3 + 1 ) ... N ) ( ( P ` i ) ^ 2 ) ) ) |
| 285 |
|
1re |
|- 1 e. RR |
| 286 |
|
zaddcl |
|- ( ( 3 e. ZZ /\ 1 e. ZZ ) -> ( 3 + 1 ) e. ZZ ) |
| 287 |
4 244 286
|
mp2an |
|- ( 3 + 1 ) e. ZZ |
| 288 |
287
|
zrei |
|- ( 3 + 1 ) e. RR |
| 289 |
|
1lt3 |
|- 1 < 3 |
| 290 |
48
|
ltp1i |
|- 3 < ( 3 + 1 ) |
| 291 |
285 48 288
|
lttri |
|- ( ( 1 < 3 /\ 3 < ( 3 + 1 ) ) -> 1 < ( 3 + 1 ) ) |
| 292 |
289 290 291
|
mp2an |
|- 1 < ( 3 + 1 ) |
| 293 |
285 288 292
|
ltleii |
|- 1 <_ ( 3 + 1 ) |
| 294 |
|
eluz |
|- ( ( 1 e. ZZ /\ ( 3 + 1 ) e. ZZ ) -> ( ( 3 + 1 ) e. ( ZZ>= ` 1 ) <-> 1 <_ ( 3 + 1 ) ) ) |
| 295 |
244 287 294
|
mp2an |
|- ( ( 3 + 1 ) e. ( ZZ>= ` 1 ) <-> 1 <_ ( 3 + 1 ) ) |
| 296 |
293 295
|
mpbir |
|- ( 3 + 1 ) e. ( ZZ>= ` 1 ) |
| 297 |
|
fzss1 |
|- ( ( 3 + 1 ) e. ( ZZ>= ` 1 ) -> ( ( 3 + 1 ) ... N ) C_ ( 1 ... N ) ) |
| 298 |
296 297
|
ax-mp |
|- ( ( 3 + 1 ) ... N ) C_ ( 1 ... N ) |
| 299 |
298
|
sseli |
|- ( i e. ( ( 3 + 1 ) ... N ) -> i e. ( 1 ... N ) ) |
| 300 |
48 288
|
ltnlei |
|- ( 3 < ( 3 + 1 ) <-> -. ( 3 + 1 ) <_ 3 ) |
| 301 |
290 300
|
mpbi |
|- -. ( 3 + 1 ) <_ 3 |
| 302 |
301
|
intnanr |
|- -. ( ( 3 + 1 ) <_ 3 /\ 3 <_ N ) |
| 303 |
|
elfz |
|- ( ( 3 e. ZZ /\ ( 3 + 1 ) e. ZZ /\ N e. ZZ ) -> ( 3 e. ( ( 3 + 1 ) ... N ) <-> ( ( 3 + 1 ) <_ 3 /\ 3 <_ N ) ) ) |
| 304 |
4 287 233 303
|
mp3an12i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( 3 e. ( ( 3 + 1 ) ... N ) <-> ( ( 3 + 1 ) <_ 3 /\ 3 <_ N ) ) ) |
| 305 |
302 304
|
mtbiri |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> -. 3 e. ( ( 3 + 1 ) ... N ) ) |
| 306 |
|
eleq1 |
|- ( i = 3 -> ( i e. ( ( 3 + 1 ) ... N ) <-> 3 e. ( ( 3 + 1 ) ... N ) ) ) |
| 307 |
306
|
notbid |
|- ( i = 3 -> ( -. i e. ( ( 3 + 1 ) ... N ) <-> -. 3 e. ( ( 3 + 1 ) ... N ) ) ) |
| 308 |
305 307
|
syl5ibrcom |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( i = 3 -> -. i e. ( ( 3 + 1 ) ... N ) ) ) |
| 309 |
308
|
necon2ad |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( i e. ( ( 3 + 1 ) ... N ) -> i =/= 3 ) ) |
| 310 |
309
|
imp |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( ( 3 + 1 ) ... N ) ) -> i =/= 3 ) |
| 311 |
1
|
axlowdimlem9 |
|- ( ( i e. ( 1 ... N ) /\ i =/= 3 ) -> ( P ` i ) = 0 ) |
| 312 |
299 310 311
|
syl2an2 |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( ( 3 + 1 ) ... N ) ) -> ( P ` i ) = 0 ) |
| 313 |
312
|
sq0id |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) /\ i e. ( ( 3 + 1 ) ... N ) ) -> ( ( P ` i ) ^ 2 ) = 0 ) |
| 314 |
313
|
sumeq2dv |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> sum_ i e. ( ( 3 + 1 ) ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( ( 3 + 1 ) ... N ) 0 ) |
| 315 |
|
fzfi |
|- ( ( 3 + 1 ) ... N ) e. Fin |
| 316 |
315
|
olci |
|- ( ( ( 3 + 1 ) ... N ) C_ ( ZZ>= ` 1 ) \/ ( ( 3 + 1 ) ... N ) e. Fin ) |
| 317 |
|
sumz |
|- ( ( ( ( 3 + 1 ) ... N ) C_ ( ZZ>= ` 1 ) \/ ( ( 3 + 1 ) ... N ) e. Fin ) -> sum_ i e. ( ( 3 + 1 ) ... N ) 0 = 0 ) |
| 318 |
316 317
|
ax-mp |
|- sum_ i e. ( ( 3 + 1 ) ... N ) 0 = 0 |
| 319 |
314 318
|
eqtrdi |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> sum_ i e. ( ( 3 + 1 ) ... N ) ( ( P ` i ) ^ 2 ) = 0 ) |
| 320 |
319
|
oveq2d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> ( 1 + sum_ i e. ( ( 3 + 1 ) ... N ) ( ( P ` i ) ^ 2 ) ) = ( 1 + 0 ) ) |
| 321 |
284 320
|
eqtrd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = ( 1 + 0 ) ) |
| 322 |
321 213
|
eqtrdi |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = 1 ) |
| 323 |
322
|
3adant3 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = 1 ) |
| 324 |
221 274 323
|
3eqtr4rd |
|- ( ( N e. ( ZZ>= ` 3 ) /\ 3 < N /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) |
| 325 |
44 54 55 324
|
syl3anc |
|- ( ( N =/= 3 /\ ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) |
| 326 |
325
|
ex |
|- ( N =/= 3 -> ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) ) |
| 327 |
43 326
|
pm2.61ine |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) |