| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axlowdimlem16.1 |
|- P = ( { <. 3 , -u 1 >. } u. ( ( ( 1 ... N ) \ { 3 } ) X. { 0 } ) ) |
| 2 |
|
axlowdimlem16.2 |
|- Q = ( { <. ( I + 1 ) , 1 >. } u. ( ( ( 1 ... N ) \ { ( I + 1 ) } ) X. { 0 } ) ) |
| 3 |
|
axlowdimlem17.3 |
|- A = ( { <. 1 , X >. , <. 2 , Y >. } u. ( ( 3 ... N ) X. { 0 } ) ) |
| 4 |
|
axlowdimlem17.4 |
|- X e. RR |
| 5 |
|
axlowdimlem17.5 |
|- Y e. RR |
| 6 |
|
uzuzle23 |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) ) |
| 7 |
6
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> N e. ( ZZ>= ` 2 ) ) |
| 8 |
|
fzss2 |
|- ( N e. ( ZZ>= ` 2 ) -> ( 1 ... 2 ) C_ ( 1 ... N ) ) |
| 9 |
7 8
|
syl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( 1 ... 2 ) C_ ( 1 ... N ) ) |
| 10 |
|
simpr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> i e. ( 1 ... 2 ) ) |
| 11 |
9 10
|
sseldd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> i e. ( 1 ... N ) ) |
| 12 |
|
fznuz |
|- ( i e. ( 1 ... 2 ) -> -. i e. ( ZZ>= ` ( 2 + 1 ) ) ) |
| 13 |
12
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> -. i e. ( ZZ>= ` ( 2 + 1 ) ) ) |
| 14 |
|
3z |
|- 3 e. ZZ |
| 15 |
|
uzid |
|- ( 3 e. ZZ -> 3 e. ( ZZ>= ` 3 ) ) |
| 16 |
14 15
|
ax-mp |
|- 3 e. ( ZZ>= ` 3 ) |
| 17 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 18 |
17
|
fveq2i |
|- ( ZZ>= ` 3 ) = ( ZZ>= ` ( 2 + 1 ) ) |
| 19 |
16 18
|
eleqtri |
|- 3 e. ( ZZ>= ` ( 2 + 1 ) ) |
| 20 |
|
eleq1 |
|- ( i = 3 -> ( i e. ( ZZ>= ` ( 2 + 1 ) ) <-> 3 e. ( ZZ>= ` ( 2 + 1 ) ) ) ) |
| 21 |
19 20
|
mpbiri |
|- ( i = 3 -> i e. ( ZZ>= ` ( 2 + 1 ) ) ) |
| 22 |
21
|
necon3bi |
|- ( -. i e. ( ZZ>= ` ( 2 + 1 ) ) -> i =/= 3 ) |
| 23 |
13 22
|
syl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> i =/= 3 ) |
| 24 |
1
|
axlowdimlem9 |
|- ( ( i e. ( 1 ... N ) /\ i =/= 3 ) -> ( P ` i ) = 0 ) |
| 25 |
11 23 24
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( P ` i ) = 0 ) |
| 26 |
|
elfzuz |
|- ( I e. ( 2 ... ( N - 1 ) ) -> I e. ( ZZ>= ` 2 ) ) |
| 27 |
26
|
ad2antlr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> I e. ( ZZ>= ` 2 ) ) |
| 28 |
|
eluzp1p1 |
|- ( I e. ( ZZ>= ` 2 ) -> ( I + 1 ) e. ( ZZ>= ` ( 2 + 1 ) ) ) |
| 29 |
27 28
|
syl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( I + 1 ) e. ( ZZ>= ` ( 2 + 1 ) ) ) |
| 30 |
|
uzss |
|- ( ( I + 1 ) e. ( ZZ>= ` ( 2 + 1 ) ) -> ( ZZ>= ` ( I + 1 ) ) C_ ( ZZ>= ` ( 2 + 1 ) ) ) |
| 31 |
29 30
|
syl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( ZZ>= ` ( I + 1 ) ) C_ ( ZZ>= ` ( 2 + 1 ) ) ) |
| 32 |
31 13
|
ssneldd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> -. i e. ( ZZ>= ` ( I + 1 ) ) ) |
| 33 |
|
eluzelz |
|- ( ( I + 1 ) e. ( ZZ>= ` ( 2 + 1 ) ) -> ( I + 1 ) e. ZZ ) |
| 34 |
29 33
|
syl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( I + 1 ) e. ZZ ) |
| 35 |
|
uzid |
|- ( ( I + 1 ) e. ZZ -> ( I + 1 ) e. ( ZZ>= ` ( I + 1 ) ) ) |
| 36 |
34 35
|
syl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( I + 1 ) e. ( ZZ>= ` ( I + 1 ) ) ) |
| 37 |
|
eleq1 |
|- ( i = ( I + 1 ) -> ( i e. ( ZZ>= ` ( I + 1 ) ) <-> ( I + 1 ) e. ( ZZ>= ` ( I + 1 ) ) ) ) |
| 38 |
36 37
|
syl5ibrcom |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( i = ( I + 1 ) -> i e. ( ZZ>= ` ( I + 1 ) ) ) ) |
| 39 |
38
|
necon3bd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( -. i e. ( ZZ>= ` ( I + 1 ) ) -> i =/= ( I + 1 ) ) ) |
| 40 |
32 39
|
mpd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> i =/= ( I + 1 ) ) |
| 41 |
2
|
axlowdimlem12 |
|- ( ( i e. ( 1 ... N ) /\ i =/= ( I + 1 ) ) -> ( Q ` i ) = 0 ) |
| 42 |
11 40 41
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( Q ` i ) = 0 ) |
| 43 |
25 42
|
eqtr4d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( P ` i ) = ( Q ` i ) ) |
| 44 |
43
|
oveq1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( ( P ` i ) - ( A ` i ) ) = ( ( Q ` i ) - ( A ` i ) ) ) |
| 45 |
44
|
oveq1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... 2 ) ) -> ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) ) |
| 46 |
45
|
sumeq2dv |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 1 ... 2 ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... 2 ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) ) |
| 47 |
1 2
|
axlowdimlem16 |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) |
| 48 |
3
|
fveq1i |
|- ( A ` i ) = ( ( { <. 1 , X >. , <. 2 , Y >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) |
| 49 |
|
axlowdimlem2 |
|- ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) |
| 50 |
4 5
|
axlowdimlem4 |
|- { <. 1 , X >. , <. 2 , Y >. } : ( 1 ... 2 ) --> RR |
| 51 |
|
ffn |
|- ( { <. 1 , X >. , <. 2 , Y >. } : ( 1 ... 2 ) --> RR -> { <. 1 , X >. , <. 2 , Y >. } Fn ( 1 ... 2 ) ) |
| 52 |
50 51
|
ax-mp |
|- { <. 1 , X >. , <. 2 , Y >. } Fn ( 1 ... 2 ) |
| 53 |
|
axlowdimlem1 |
|- ( ( 3 ... N ) X. { 0 } ) : ( 3 ... N ) --> RR |
| 54 |
|
ffn |
|- ( ( ( 3 ... N ) X. { 0 } ) : ( 3 ... N ) --> RR -> ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) ) |
| 55 |
53 54
|
ax-mp |
|- ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) |
| 56 |
|
fvun2 |
|- ( ( { <. 1 , X >. , <. 2 , Y >. } Fn ( 1 ... 2 ) /\ ( ( 3 ... N ) X. { 0 } ) Fn ( 3 ... N ) /\ ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ i e. ( 3 ... N ) ) ) -> ( ( { <. 1 , X >. , <. 2 , Y >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = ( ( ( 3 ... N ) X. { 0 } ) ` i ) ) |
| 57 |
52 55 56
|
mp3an12 |
|- ( ( ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) /\ i e. ( 3 ... N ) ) -> ( ( { <. 1 , X >. , <. 2 , Y >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = ( ( ( 3 ... N ) X. { 0 } ) ` i ) ) |
| 58 |
49 57
|
mpan |
|- ( i e. ( 3 ... N ) -> ( ( { <. 1 , X >. , <. 2 , Y >. } u. ( ( 3 ... N ) X. { 0 } ) ) ` i ) = ( ( ( 3 ... N ) X. { 0 } ) ` i ) ) |
| 59 |
48 58
|
eqtrid |
|- ( i e. ( 3 ... N ) -> ( A ` i ) = ( ( ( 3 ... N ) X. { 0 } ) ` i ) ) |
| 60 |
|
c0ex |
|- 0 e. _V |
| 61 |
60
|
fvconst2 |
|- ( i e. ( 3 ... N ) -> ( ( ( 3 ... N ) X. { 0 } ) ` i ) = 0 ) |
| 62 |
59 61
|
eqtrd |
|- ( i e. ( 3 ... N ) -> ( A ` i ) = 0 ) |
| 63 |
62
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( A ` i ) = 0 ) |
| 64 |
63
|
oveq2d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( P ` i ) - ( A ` i ) ) = ( ( P ` i ) - 0 ) ) |
| 65 |
1
|
axlowdimlem7 |
|- ( N e. ( ZZ>= ` 3 ) -> P e. ( EE ` N ) ) |
| 66 |
65
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> P e. ( EE ` N ) ) |
| 67 |
|
3nn |
|- 3 e. NN |
| 68 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 69 |
67 68
|
eleqtri |
|- 3 e. ( ZZ>= ` 1 ) |
| 70 |
|
fzss1 |
|- ( 3 e. ( ZZ>= ` 1 ) -> ( 3 ... N ) C_ ( 1 ... N ) ) |
| 71 |
69 70
|
ax-mp |
|- ( 3 ... N ) C_ ( 1 ... N ) |
| 72 |
71
|
sseli |
|- ( i e. ( 3 ... N ) -> i e. ( 1 ... N ) ) |
| 73 |
72
|
adantl |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> i e. ( 1 ... N ) ) |
| 74 |
|
fveecn |
|- ( ( P e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( P ` i ) e. CC ) |
| 75 |
66 73 74
|
syl2anc |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( P ` i ) e. CC ) |
| 76 |
75
|
subid1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( P ` i ) - 0 ) = ( P ` i ) ) |
| 77 |
64 76
|
eqtrd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( P ` i ) - ( A ` i ) ) = ( P ` i ) ) |
| 78 |
77
|
oveq1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = ( ( P ` i ) ^ 2 ) ) |
| 79 |
78
|
sumeq2dv |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( P ` i ) ^ 2 ) ) |
| 80 |
63
|
oveq2d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( Q ` i ) - ( A ` i ) ) = ( ( Q ` i ) - 0 ) ) |
| 81 |
|
eluzge3nn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. NN ) |
| 82 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
| 83 |
|
fzss1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... ( N - 1 ) ) C_ ( 1 ... ( N - 1 ) ) ) |
| 84 |
82 83
|
ax-mp |
|- ( 2 ... ( N - 1 ) ) C_ ( 1 ... ( N - 1 ) ) |
| 85 |
84
|
sseli |
|- ( I e. ( 2 ... ( N - 1 ) ) -> I e. ( 1 ... ( N - 1 ) ) ) |
| 86 |
2
|
axlowdimlem10 |
|- ( ( N e. NN /\ I e. ( 1 ... ( N - 1 ) ) ) -> Q e. ( EE ` N ) ) |
| 87 |
81 85 86
|
syl2an |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> Q e. ( EE ` N ) ) |
| 88 |
|
fveecn |
|- ( ( Q e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( Q ` i ) e. CC ) |
| 89 |
87 72 88
|
syl2an |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( Q ` i ) e. CC ) |
| 90 |
89
|
subid1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( Q ` i ) - 0 ) = ( Q ` i ) ) |
| 91 |
80 90
|
eqtrd |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( Q ` i ) - ( A ` i ) ) = ( Q ` i ) ) |
| 92 |
91
|
oveq1d |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 3 ... N ) ) -> ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) = ( ( Q ` i ) ^ 2 ) ) |
| 93 |
92
|
sumeq2dv |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( Q ` i ) ^ 2 ) ) |
| 94 |
47 79 93
|
3eqtr4d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 3 ... N ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = sum_ i e. ( 3 ... N ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) ) |
| 95 |
46 94
|
oveq12d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( sum_ i e. ( 1 ... 2 ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) + sum_ i e. ( 3 ... N ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) ) = ( sum_ i e. ( 1 ... 2 ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) + sum_ i e. ( 3 ... N ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) ) ) |
| 96 |
49
|
a1i |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) ) |
| 97 |
|
eluzelre |
|- ( N e. ( ZZ>= ` 3 ) -> N e. RR ) |
| 98 |
|
eluzle |
|- ( N e. ( ZZ>= ` 3 ) -> 3 <_ N ) |
| 99 |
|
2re |
|- 2 e. RR |
| 100 |
|
3re |
|- 3 e. RR |
| 101 |
|
2lt3 |
|- 2 < 3 |
| 102 |
99 100 101
|
ltleii |
|- 2 <_ 3 |
| 103 |
|
letr |
|- ( ( 2 e. RR /\ 3 e. RR /\ N e. RR ) -> ( ( 2 <_ 3 /\ 3 <_ N ) -> 2 <_ N ) ) |
| 104 |
99 100 103
|
mp3an12 |
|- ( N e. RR -> ( ( 2 <_ 3 /\ 3 <_ N ) -> 2 <_ N ) ) |
| 105 |
102 104
|
mpani |
|- ( N e. RR -> ( 3 <_ N -> 2 <_ N ) ) |
| 106 |
97 98 105
|
sylc |
|- ( N e. ( ZZ>= ` 3 ) -> 2 <_ N ) |
| 107 |
|
1le2 |
|- 1 <_ 2 |
| 108 |
106 107
|
jctil |
|- ( N e. ( ZZ>= ` 3 ) -> ( 1 <_ 2 /\ 2 <_ N ) ) |
| 109 |
108
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 1 <_ 2 /\ 2 <_ N ) ) |
| 110 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ZZ ) |
| 111 |
110
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> N e. ZZ ) |
| 112 |
|
2z |
|- 2 e. ZZ |
| 113 |
|
1z |
|- 1 e. ZZ |
| 114 |
|
elfz |
|- ( ( 2 e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( 2 e. ( 1 ... N ) <-> ( 1 <_ 2 /\ 2 <_ N ) ) ) |
| 115 |
112 113 114
|
mp3an12 |
|- ( N e. ZZ -> ( 2 e. ( 1 ... N ) <-> ( 1 <_ 2 /\ 2 <_ N ) ) ) |
| 116 |
111 115
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 2 e. ( 1 ... N ) <-> ( 1 <_ 2 /\ 2 <_ N ) ) ) |
| 117 |
109 116
|
mpbird |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> 2 e. ( 1 ... N ) ) |
| 118 |
|
fzsplit |
|- ( 2 e. ( 1 ... N ) -> ( 1 ... N ) = ( ( 1 ... 2 ) u. ( ( 2 + 1 ) ... N ) ) ) |
| 119 |
117 118
|
syl |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... 2 ) u. ( ( 2 + 1 ) ... N ) ) ) |
| 120 |
17
|
oveq1i |
|- ( 3 ... N ) = ( ( 2 + 1 ) ... N ) |
| 121 |
120
|
uneq2i |
|- ( ( 1 ... 2 ) u. ( 3 ... N ) ) = ( ( 1 ... 2 ) u. ( ( 2 + 1 ) ... N ) ) |
| 122 |
119 121
|
eqtr4di |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... 2 ) u. ( 3 ... N ) ) ) |
| 123 |
|
fzfid |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( 1 ... N ) e. Fin ) |
| 124 |
65
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> P e. ( EE ` N ) ) |
| 125 |
124 74
|
sylancom |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( P ` i ) e. CC ) |
| 126 |
4 5
|
axlowdimlem5 |
|- ( N e. ( ZZ>= ` 2 ) -> ( { <. 1 , X >. , <. 2 , Y >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) ) |
| 127 |
3 126
|
eqeltrid |
|- ( N e. ( ZZ>= ` 2 ) -> A e. ( EE ` N ) ) |
| 128 |
6 127
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> A e. ( EE ` N ) ) |
| 129 |
128
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> A e. ( EE ` N ) ) |
| 130 |
|
fveecn |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
| 131 |
129 130
|
sylancom |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
| 132 |
125 131
|
subcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( P ` i ) - ( A ` i ) ) e. CC ) |
| 133 |
132
|
sqcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) e. CC ) |
| 134 |
96 122 123 133
|
fsumsplit |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = ( sum_ i e. ( 1 ... 2 ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) + sum_ i e. ( 3 ... N ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) ) ) |
| 135 |
87 88
|
sylan |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( Q ` i ) e. CC ) |
| 136 |
135 131
|
subcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( Q ` i ) - ( A ` i ) ) e. CC ) |
| 137 |
136
|
sqcld |
|- ( ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) e. CC ) |
| 138 |
96 122 123 137
|
fsumsplit |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) = ( sum_ i e. ( 1 ... 2 ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) + sum_ i e. ( 3 ... N ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) ) ) |
| 139 |
95 134 138
|
3eqtr4d |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> sum_ i e. ( 1 ... N ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) ) |
| 140 |
65
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> P e. ( EE ` N ) ) |
| 141 |
128
|
adantr |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> A e. ( EE ` N ) ) |
| 142 |
|
brcgr |
|- ( ( ( P e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( Q e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( <. P , A >. Cgr <. Q , A >. <-> sum_ i e. ( 1 ... N ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) ) ) |
| 143 |
140 141 87 141 142
|
syl22anc |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> ( <. P , A >. Cgr <. Q , A >. <-> sum_ i e. ( 1 ... N ) ( ( ( P ` i ) - ( A ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( Q ` i ) - ( A ` i ) ) ^ 2 ) ) ) |
| 144 |
139 143
|
mpbird |
|- ( ( N e. ( ZZ>= ` 3 ) /\ I e. ( 2 ... ( N - 1 ) ) ) -> <. P , A >. Cgr <. Q , A >. ) |