| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1le2 |
|- 1 <_ 2 |
| 2 |
1
|
a1i |
|- ( N e. ( ZZ>= ` 2 ) -> 1 <_ 2 ) |
| 3 |
|
eluzle |
|- ( N e. ( ZZ>= ` 2 ) -> 2 <_ N ) |
| 4 |
|
2z |
|- 2 e. ZZ |
| 5 |
|
1z |
|- 1 e. ZZ |
| 6 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) |
| 7 |
|
elfz |
|- ( ( 2 e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( 2 e. ( 1 ... N ) <-> ( 1 <_ 2 /\ 2 <_ N ) ) ) |
| 8 |
4 5 6 7
|
mp3an12i |
|- ( N e. ( ZZ>= ` 2 ) -> ( 2 e. ( 1 ... N ) <-> ( 1 <_ 2 /\ 2 <_ N ) ) ) |
| 9 |
2 3 8
|
mpbir2and |
|- ( N e. ( ZZ>= ` 2 ) -> 2 e. ( 1 ... N ) ) |
| 10 |
|
fzsplit |
|- ( 2 e. ( 1 ... N ) -> ( 1 ... N ) = ( ( 1 ... 2 ) u. ( ( 2 + 1 ) ... N ) ) ) |
| 11 |
9 10
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( 1 ... N ) = ( ( 1 ... 2 ) u. ( ( 2 + 1 ) ... N ) ) ) |
| 12 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 13 |
12
|
oveq1i |
|- ( 3 ... N ) = ( ( 2 + 1 ) ... N ) |
| 14 |
13
|
uneq2i |
|- ( ( 1 ... 2 ) u. ( 3 ... N ) ) = ( ( 1 ... 2 ) u. ( ( 2 + 1 ) ... N ) ) |
| 15 |
11 14
|
eqtr4di |
|- ( N e. ( ZZ>= ` 2 ) -> ( 1 ... N ) = ( ( 1 ... 2 ) u. ( 3 ... N ) ) ) |