| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axlowdimlem4.1 |
|- A e. RR |
| 2 |
|
axlowdimlem4.2 |
|- B e. RR |
| 3 |
|
1ne2 |
|- 1 =/= 2 |
| 4 |
|
1ex |
|- 1 e. _V |
| 5 |
|
2ex |
|- 2 e. _V |
| 6 |
1
|
elexi |
|- A e. _V |
| 7 |
2
|
elexi |
|- B e. _V |
| 8 |
4 5 6 7
|
fpr |
|- ( 1 =/= 2 -> { <. 1 , A >. , <. 2 , B >. } : { 1 , 2 } --> { A , B } ) |
| 9 |
3 8
|
ax-mp |
|- { <. 1 , A >. , <. 2 , B >. } : { 1 , 2 } --> { A , B } |
| 10 |
|
fz12pr |
|- ( 1 ... 2 ) = { 1 , 2 } |
| 11 |
10
|
feq2i |
|- ( { <. 1 , A >. , <. 2 , B >. } : ( 1 ... 2 ) --> { A , B } <-> { <. 1 , A >. , <. 2 , B >. } : { 1 , 2 } --> { A , B } ) |
| 12 |
9 11
|
mpbir |
|- { <. 1 , A >. , <. 2 , B >. } : ( 1 ... 2 ) --> { A , B } |
| 13 |
1 2
|
pm3.2i |
|- ( A e. RR /\ B e. RR ) |
| 14 |
6 7
|
prss |
|- ( ( A e. RR /\ B e. RR ) <-> { A , B } C_ RR ) |
| 15 |
13 14
|
mpbi |
|- { A , B } C_ RR |
| 16 |
|
fss |
|- ( ( { <. 1 , A >. , <. 2 , B >. } : ( 1 ... 2 ) --> { A , B } /\ { A , B } C_ RR ) -> { <. 1 , A >. , <. 2 , B >. } : ( 1 ... 2 ) --> RR ) |
| 17 |
12 15 16
|
mp2an |
|- { <. 1 , A >. , <. 2 , B >. } : ( 1 ... 2 ) --> RR |