| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axlowdimlem4.1 |
|- A e. RR |
| 2 |
|
axlowdimlem4.2 |
|- B e. RR |
| 3 |
1 2
|
axlowdimlem4 |
|- { <. 1 , A >. , <. 2 , B >. } : ( 1 ... 2 ) --> RR |
| 4 |
|
axlowdimlem1 |
|- ( ( 3 ... N ) X. { 0 } ) : ( 3 ... N ) --> RR |
| 5 |
3 4
|
pm3.2i |
|- ( { <. 1 , A >. , <. 2 , B >. } : ( 1 ... 2 ) --> RR /\ ( ( 3 ... N ) X. { 0 } ) : ( 3 ... N ) --> RR ) |
| 6 |
|
axlowdimlem2 |
|- ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) |
| 7 |
|
fun2 |
|- ( ( ( { <. 1 , A >. , <. 2 , B >. } : ( 1 ... 2 ) --> RR /\ ( ( 3 ... N ) X. { 0 } ) : ( 3 ... N ) --> RR ) /\ ( ( 1 ... 2 ) i^i ( 3 ... N ) ) = (/) ) -> ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) : ( ( 1 ... 2 ) u. ( 3 ... N ) ) --> RR ) |
| 8 |
5 6 7
|
mp2an |
|- ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) : ( ( 1 ... 2 ) u. ( 3 ... N ) ) --> RR |
| 9 |
|
axlowdimlem3 |
|- ( N e. ( ZZ>= ` 2 ) -> ( 1 ... N ) = ( ( 1 ... 2 ) u. ( 3 ... N ) ) ) |
| 10 |
9
|
feq2d |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) : ( 1 ... N ) --> RR <-> ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) : ( ( 1 ... 2 ) u. ( 3 ... N ) ) --> RR ) ) |
| 11 |
8 10
|
mpbiri |
|- ( N e. ( ZZ>= ` 2 ) -> ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) : ( 1 ... N ) --> RR ) |
| 12 |
|
eluz2nn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
| 13 |
|
elee |
|- ( N e. NN -> ( ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) <-> ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) : ( 1 ... N ) --> RR ) ) |
| 14 |
12 13
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) <-> ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) : ( 1 ... N ) --> RR ) ) |
| 15 |
11 14
|
mpbird |
|- ( N e. ( ZZ>= ` 2 ) -> ( { <. 1 , A >. , <. 2 , B >. } u. ( ( 3 ... N ) X. { 0 } ) ) e. ( EE ` N ) ) |