| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-pre-ltadd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A ( C + A ) |
| 2 |
|
ltxrlt |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> A |
| 3 |
2
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> A |
| 4 |
|
readdcl |
|- ( ( C e. RR /\ A e. RR ) -> ( C + A ) e. RR ) |
| 5 |
|
readdcl |
|- ( ( C e. RR /\ B e. RR ) -> ( C + B ) e. RR ) |
| 6 |
|
ltxrlt |
|- ( ( ( C + A ) e. RR /\ ( C + B ) e. RR ) -> ( ( C + A ) < ( C + B ) <-> ( C + A ) |
| 7 |
4 5 6
|
syl2an |
|- ( ( ( C e. RR /\ A e. RR ) /\ ( C e. RR /\ B e. RR ) ) -> ( ( C + A ) < ( C + B ) <-> ( C + A ) |
| 8 |
7
|
3impdi |
|- ( ( C e. RR /\ A e. RR /\ B e. RR ) -> ( ( C + A ) < ( C + B ) <-> ( C + A ) |
| 9 |
8
|
3coml |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + A ) < ( C + B ) <-> ( C + A ) |
| 10 |
1 3 9
|
3imtr4d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B -> ( C + A ) < ( C + B ) ) ) |