Step |
Hyp |
Ref |
Expression |
1 |
|
ax-pre-lttri |
|- ( ( A e. RR /\ B e. RR ) -> ( A -. ( A = B \/ B |
2 |
|
ltxrlt |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> A |
3 |
|
ltxrlt |
|- ( ( B e. RR /\ A e. RR ) -> ( B < A <-> B |
4 |
3
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B < A <-> B |
5 |
4
|
orbi2d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A = B \/ B < A ) <-> ( A = B \/ B |
6 |
5
|
notbid |
|- ( ( A e. RR /\ B e. RR ) -> ( -. ( A = B \/ B < A ) <-> -. ( A = B \/ B |
7 |
1 2 6
|
3bitr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |