Metamath Proof Explorer


Theorem axlttri

Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-lttri with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion axlttri
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) )

Proof

Step Hyp Ref Expression
1 ax-pre-lttri
 |-  ( ( A e. RR /\ B e. RR ) -> ( A  -. ( A = B \/ B 
2 ltxrlt
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> A 
3 ltxrlt
 |-  ( ( B e. RR /\ A e. RR ) -> ( B < A <-> B 
4 3 ancoms
 |-  ( ( A e. RR /\ B e. RR ) -> ( B < A <-> B 
5 4 orbi2d
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( A = B \/ B < A ) <-> ( A = B \/ B 
6 5 notbid
 |-  ( ( A e. RR /\ B e. RR ) -> ( -. ( A = B \/ B < A ) <-> -. ( A = B \/ B 
7 1 2 6 3bitr4d
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) )