| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-pre-lttrn |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A A |
| 2 |
|
ltxrlt |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> A |
| 3 |
2
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> A |
| 4 |
|
ltxrlt |
|- ( ( B e. RR /\ C e. RR ) -> ( B < C <-> B |
| 5 |
4
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B < C <-> B |
| 6 |
3 5
|
anbi12d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < B /\ B < C ) <-> ( A |
| 7 |
|
ltxrlt |
|- ( ( A e. RR /\ C e. RR ) -> ( A < C <-> A |
| 8 |
7
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < C <-> A |
| 9 |
1 6 8
|
3imtr4d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |