| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfcnqs |
|- CC = ( ( R. X. R. ) /. `' _E ) |
| 2 |
|
mulcnsrec |
|- ( ( ( x e. R. /\ y e. R. ) /\ ( z e. R. /\ w e. R. ) ) -> ( [ <. x , y >. ] `' _E x. [ <. z , w >. ] `' _E ) = [ <. ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) , ( ( y .R z ) +R ( x .R w ) ) >. ] `' _E ) |
| 3 |
|
mulcnsrec |
|- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( [ <. z , w >. ] `' _E x. [ <. v , u >. ] `' _E ) = [ <. ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) , ( ( w .R v ) +R ( z .R u ) ) >. ] `' _E ) |
| 4 |
|
mulcnsrec |
|- ( ( ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) e. R. /\ ( ( y .R z ) +R ( x .R w ) ) e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( [ <. ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) , ( ( y .R z ) +R ( x .R w ) ) >. ] `' _E x. [ <. v , u >. ] `' _E ) = [ <. ( ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R v ) +R ( -1R .R ( ( ( y .R z ) +R ( x .R w ) ) .R u ) ) ) , ( ( ( ( y .R z ) +R ( x .R w ) ) .R v ) +R ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R u ) ) >. ] `' _E ) |
| 5 |
|
mulcnsrec |
|- ( ( ( x e. R. /\ y e. R. ) /\ ( ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) e. R. /\ ( ( w .R v ) +R ( z .R u ) ) e. R. ) ) -> ( [ <. x , y >. ] `' _E x. [ <. ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) , ( ( w .R v ) +R ( z .R u ) ) >. ] `' _E ) = [ <. ( ( x .R ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) ) +R ( -1R .R ( y .R ( ( w .R v ) +R ( z .R u ) ) ) ) ) , ( ( y .R ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) ) +R ( x .R ( ( w .R v ) +R ( z .R u ) ) ) ) >. ] `' _E ) |
| 6 |
|
mulclsr |
|- ( ( x e. R. /\ z e. R. ) -> ( x .R z ) e. R. ) |
| 7 |
|
m1r |
|- -1R e. R. |
| 8 |
|
mulclsr |
|- ( ( y e. R. /\ w e. R. ) -> ( y .R w ) e. R. ) |
| 9 |
|
mulclsr |
|- ( ( -1R e. R. /\ ( y .R w ) e. R. ) -> ( -1R .R ( y .R w ) ) e. R. ) |
| 10 |
7 8 9
|
sylancr |
|- ( ( y e. R. /\ w e. R. ) -> ( -1R .R ( y .R w ) ) e. R. ) |
| 11 |
|
addclsr |
|- ( ( ( x .R z ) e. R. /\ ( -1R .R ( y .R w ) ) e. R. ) -> ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) e. R. ) |
| 12 |
6 10 11
|
syl2an |
|- ( ( ( x e. R. /\ z e. R. ) /\ ( y e. R. /\ w e. R. ) ) -> ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) e. R. ) |
| 13 |
12
|
an4s |
|- ( ( ( x e. R. /\ y e. R. ) /\ ( z e. R. /\ w e. R. ) ) -> ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) e. R. ) |
| 14 |
|
mulclsr |
|- ( ( y e. R. /\ z e. R. ) -> ( y .R z ) e. R. ) |
| 15 |
|
mulclsr |
|- ( ( x e. R. /\ w e. R. ) -> ( x .R w ) e. R. ) |
| 16 |
|
addclsr |
|- ( ( ( y .R z ) e. R. /\ ( x .R w ) e. R. ) -> ( ( y .R z ) +R ( x .R w ) ) e. R. ) |
| 17 |
14 15 16
|
syl2anr |
|- ( ( ( x e. R. /\ w e. R. ) /\ ( y e. R. /\ z e. R. ) ) -> ( ( y .R z ) +R ( x .R w ) ) e. R. ) |
| 18 |
17
|
an42s |
|- ( ( ( x e. R. /\ y e. R. ) /\ ( z e. R. /\ w e. R. ) ) -> ( ( y .R z ) +R ( x .R w ) ) e. R. ) |
| 19 |
13 18
|
jca |
|- ( ( ( x e. R. /\ y e. R. ) /\ ( z e. R. /\ w e. R. ) ) -> ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) e. R. /\ ( ( y .R z ) +R ( x .R w ) ) e. R. ) ) |
| 20 |
|
mulclsr |
|- ( ( z e. R. /\ v e. R. ) -> ( z .R v ) e. R. ) |
| 21 |
|
mulclsr |
|- ( ( w e. R. /\ u e. R. ) -> ( w .R u ) e. R. ) |
| 22 |
|
mulclsr |
|- ( ( -1R e. R. /\ ( w .R u ) e. R. ) -> ( -1R .R ( w .R u ) ) e. R. ) |
| 23 |
7 21 22
|
sylancr |
|- ( ( w e. R. /\ u e. R. ) -> ( -1R .R ( w .R u ) ) e. R. ) |
| 24 |
|
addclsr |
|- ( ( ( z .R v ) e. R. /\ ( -1R .R ( w .R u ) ) e. R. ) -> ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) e. R. ) |
| 25 |
20 23 24
|
syl2an |
|- ( ( ( z e. R. /\ v e. R. ) /\ ( w e. R. /\ u e. R. ) ) -> ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) e. R. ) |
| 26 |
25
|
an4s |
|- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) e. R. ) |
| 27 |
|
mulclsr |
|- ( ( w e. R. /\ v e. R. ) -> ( w .R v ) e. R. ) |
| 28 |
|
mulclsr |
|- ( ( z e. R. /\ u e. R. ) -> ( z .R u ) e. R. ) |
| 29 |
|
addclsr |
|- ( ( ( w .R v ) e. R. /\ ( z .R u ) e. R. ) -> ( ( w .R v ) +R ( z .R u ) ) e. R. ) |
| 30 |
27 28 29
|
syl2anr |
|- ( ( ( z e. R. /\ u e. R. ) /\ ( w e. R. /\ v e. R. ) ) -> ( ( w .R v ) +R ( z .R u ) ) e. R. ) |
| 31 |
30
|
an42s |
|- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( ( w .R v ) +R ( z .R u ) ) e. R. ) |
| 32 |
26 31
|
jca |
|- ( ( ( z e. R. /\ w e. R. ) /\ ( v e. R. /\ u e. R. ) ) -> ( ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) e. R. /\ ( ( w .R v ) +R ( z .R u ) ) e. R. ) ) |
| 33 |
|
ovex |
|- ( x .R ( z .R v ) ) e. _V |
| 34 |
|
ovex |
|- ( x .R ( -1R .R ( w .R u ) ) ) e. _V |
| 35 |
|
ovex |
|- ( -1R .R ( y .R ( w .R v ) ) ) e. _V |
| 36 |
|
addcomsr |
|- ( f +R g ) = ( g +R f ) |
| 37 |
|
addasssr |
|- ( ( f +R g ) +R h ) = ( f +R ( g +R h ) ) |
| 38 |
|
ovex |
|- ( -1R .R ( y .R ( z .R u ) ) ) e. _V |
| 39 |
33 34 35 36 37 38
|
caov42 |
|- ( ( ( x .R ( z .R v ) ) +R ( x .R ( -1R .R ( w .R u ) ) ) ) +R ( ( -1R .R ( y .R ( w .R v ) ) ) +R ( -1R .R ( y .R ( z .R u ) ) ) ) ) = ( ( ( x .R ( z .R v ) ) +R ( -1R .R ( y .R ( w .R v ) ) ) ) +R ( ( -1R .R ( y .R ( z .R u ) ) ) +R ( x .R ( -1R .R ( w .R u ) ) ) ) ) |
| 40 |
|
distrsr |
|- ( x .R ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) ) = ( ( x .R ( z .R v ) ) +R ( x .R ( -1R .R ( w .R u ) ) ) ) |
| 41 |
|
distrsr |
|- ( y .R ( ( w .R v ) +R ( z .R u ) ) ) = ( ( y .R ( w .R v ) ) +R ( y .R ( z .R u ) ) ) |
| 42 |
41
|
oveq2i |
|- ( -1R .R ( y .R ( ( w .R v ) +R ( z .R u ) ) ) ) = ( -1R .R ( ( y .R ( w .R v ) ) +R ( y .R ( z .R u ) ) ) ) |
| 43 |
|
distrsr |
|- ( -1R .R ( ( y .R ( w .R v ) ) +R ( y .R ( z .R u ) ) ) ) = ( ( -1R .R ( y .R ( w .R v ) ) ) +R ( -1R .R ( y .R ( z .R u ) ) ) ) |
| 44 |
42 43
|
eqtri |
|- ( -1R .R ( y .R ( ( w .R v ) +R ( z .R u ) ) ) ) = ( ( -1R .R ( y .R ( w .R v ) ) ) +R ( -1R .R ( y .R ( z .R u ) ) ) ) |
| 45 |
40 44
|
oveq12i |
|- ( ( x .R ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) ) +R ( -1R .R ( y .R ( ( w .R v ) +R ( z .R u ) ) ) ) ) = ( ( ( x .R ( z .R v ) ) +R ( x .R ( -1R .R ( w .R u ) ) ) ) +R ( ( -1R .R ( y .R ( w .R v ) ) ) +R ( -1R .R ( y .R ( z .R u ) ) ) ) ) |
| 46 |
|
vex |
|- x e. _V |
| 47 |
7
|
elexi |
|- -1R e. _V |
| 48 |
|
vex |
|- z e. _V |
| 49 |
|
mulcomsr |
|- ( f .R g ) = ( g .R f ) |
| 50 |
|
distrsr |
|- ( f .R ( g +R h ) ) = ( ( f .R g ) +R ( f .R h ) ) |
| 51 |
|
ovex |
|- ( y .R w ) e. _V |
| 52 |
|
vex |
|- v e. _V |
| 53 |
|
mulasssr |
|- ( ( f .R g ) .R h ) = ( f .R ( g .R h ) ) |
| 54 |
46 47 48 49 50 51 52 53
|
caovdilem |
|- ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R v ) = ( ( x .R ( z .R v ) ) +R ( -1R .R ( ( y .R w ) .R v ) ) ) |
| 55 |
|
mulasssr |
|- ( ( y .R w ) .R v ) = ( y .R ( w .R v ) ) |
| 56 |
55
|
oveq2i |
|- ( -1R .R ( ( y .R w ) .R v ) ) = ( -1R .R ( y .R ( w .R v ) ) ) |
| 57 |
56
|
oveq2i |
|- ( ( x .R ( z .R v ) ) +R ( -1R .R ( ( y .R w ) .R v ) ) ) = ( ( x .R ( z .R v ) ) +R ( -1R .R ( y .R ( w .R v ) ) ) ) |
| 58 |
54 57
|
eqtri |
|- ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R v ) = ( ( x .R ( z .R v ) ) +R ( -1R .R ( y .R ( w .R v ) ) ) ) |
| 59 |
|
vex |
|- y e. _V |
| 60 |
|
vex |
|- w e. _V |
| 61 |
|
vex |
|- u e. _V |
| 62 |
59 46 48 49 50 60 61 53
|
caovdilem |
|- ( ( ( y .R z ) +R ( x .R w ) ) .R u ) = ( ( y .R ( z .R u ) ) +R ( x .R ( w .R u ) ) ) |
| 63 |
62
|
oveq2i |
|- ( -1R .R ( ( ( y .R z ) +R ( x .R w ) ) .R u ) ) = ( -1R .R ( ( y .R ( z .R u ) ) +R ( x .R ( w .R u ) ) ) ) |
| 64 |
|
distrsr |
|- ( -1R .R ( ( y .R ( z .R u ) ) +R ( x .R ( w .R u ) ) ) ) = ( ( -1R .R ( y .R ( z .R u ) ) ) +R ( -1R .R ( x .R ( w .R u ) ) ) ) |
| 65 |
|
ovex |
|- ( w .R u ) e. _V |
| 66 |
47 46 65 49 53
|
caov12 |
|- ( -1R .R ( x .R ( w .R u ) ) ) = ( x .R ( -1R .R ( w .R u ) ) ) |
| 67 |
66
|
oveq2i |
|- ( ( -1R .R ( y .R ( z .R u ) ) ) +R ( -1R .R ( x .R ( w .R u ) ) ) ) = ( ( -1R .R ( y .R ( z .R u ) ) ) +R ( x .R ( -1R .R ( w .R u ) ) ) ) |
| 68 |
64 67
|
eqtri |
|- ( -1R .R ( ( y .R ( z .R u ) ) +R ( x .R ( w .R u ) ) ) ) = ( ( -1R .R ( y .R ( z .R u ) ) ) +R ( x .R ( -1R .R ( w .R u ) ) ) ) |
| 69 |
63 68
|
eqtri |
|- ( -1R .R ( ( ( y .R z ) +R ( x .R w ) ) .R u ) ) = ( ( -1R .R ( y .R ( z .R u ) ) ) +R ( x .R ( -1R .R ( w .R u ) ) ) ) |
| 70 |
58 69
|
oveq12i |
|- ( ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R v ) +R ( -1R .R ( ( ( y .R z ) +R ( x .R w ) ) .R u ) ) ) = ( ( ( x .R ( z .R v ) ) +R ( -1R .R ( y .R ( w .R v ) ) ) ) +R ( ( -1R .R ( y .R ( z .R u ) ) ) +R ( x .R ( -1R .R ( w .R u ) ) ) ) ) |
| 71 |
39 45 70
|
3eqtr4ri |
|- ( ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R v ) +R ( -1R .R ( ( ( y .R z ) +R ( x .R w ) ) .R u ) ) ) = ( ( x .R ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) ) +R ( -1R .R ( y .R ( ( w .R v ) +R ( z .R u ) ) ) ) ) |
| 72 |
|
ovex |
|- ( y .R ( z .R v ) ) e. _V |
| 73 |
|
ovex |
|- ( y .R ( -1R .R ( w .R u ) ) ) e. _V |
| 74 |
|
ovex |
|- ( x .R ( w .R v ) ) e. _V |
| 75 |
|
ovex |
|- ( x .R ( z .R u ) ) e. _V |
| 76 |
72 73 74 36 37 75
|
caov42 |
|- ( ( ( y .R ( z .R v ) ) +R ( y .R ( -1R .R ( w .R u ) ) ) ) +R ( ( x .R ( w .R v ) ) +R ( x .R ( z .R u ) ) ) ) = ( ( ( y .R ( z .R v ) ) +R ( x .R ( w .R v ) ) ) +R ( ( x .R ( z .R u ) ) +R ( y .R ( -1R .R ( w .R u ) ) ) ) ) |
| 77 |
|
distrsr |
|- ( y .R ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) ) = ( ( y .R ( z .R v ) ) +R ( y .R ( -1R .R ( w .R u ) ) ) ) |
| 78 |
|
distrsr |
|- ( x .R ( ( w .R v ) +R ( z .R u ) ) ) = ( ( x .R ( w .R v ) ) +R ( x .R ( z .R u ) ) ) |
| 79 |
77 78
|
oveq12i |
|- ( ( y .R ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) ) +R ( x .R ( ( w .R v ) +R ( z .R u ) ) ) ) = ( ( ( y .R ( z .R v ) ) +R ( y .R ( -1R .R ( w .R u ) ) ) ) +R ( ( x .R ( w .R v ) ) +R ( x .R ( z .R u ) ) ) ) |
| 80 |
59 46 48 49 50 60 52 53
|
caovdilem |
|- ( ( ( y .R z ) +R ( x .R w ) ) .R v ) = ( ( y .R ( z .R v ) ) +R ( x .R ( w .R v ) ) ) |
| 81 |
46 47 48 49 50 51 61 53
|
caovdilem |
|- ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R u ) = ( ( x .R ( z .R u ) ) +R ( -1R .R ( ( y .R w ) .R u ) ) ) |
| 82 |
|
mulasssr |
|- ( ( y .R w ) .R u ) = ( y .R ( w .R u ) ) |
| 83 |
82
|
oveq2i |
|- ( -1R .R ( ( y .R w ) .R u ) ) = ( -1R .R ( y .R ( w .R u ) ) ) |
| 84 |
47 59 65 49 53
|
caov12 |
|- ( -1R .R ( y .R ( w .R u ) ) ) = ( y .R ( -1R .R ( w .R u ) ) ) |
| 85 |
83 84
|
eqtri |
|- ( -1R .R ( ( y .R w ) .R u ) ) = ( y .R ( -1R .R ( w .R u ) ) ) |
| 86 |
85
|
oveq2i |
|- ( ( x .R ( z .R u ) ) +R ( -1R .R ( ( y .R w ) .R u ) ) ) = ( ( x .R ( z .R u ) ) +R ( y .R ( -1R .R ( w .R u ) ) ) ) |
| 87 |
81 86
|
eqtri |
|- ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R u ) = ( ( x .R ( z .R u ) ) +R ( y .R ( -1R .R ( w .R u ) ) ) ) |
| 88 |
80 87
|
oveq12i |
|- ( ( ( ( y .R z ) +R ( x .R w ) ) .R v ) +R ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R u ) ) = ( ( ( y .R ( z .R v ) ) +R ( x .R ( w .R v ) ) ) +R ( ( x .R ( z .R u ) ) +R ( y .R ( -1R .R ( w .R u ) ) ) ) ) |
| 89 |
76 79 88
|
3eqtr4ri |
|- ( ( ( ( y .R z ) +R ( x .R w ) ) .R v ) +R ( ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) .R u ) ) = ( ( y .R ( ( z .R v ) +R ( -1R .R ( w .R u ) ) ) ) +R ( x .R ( ( w .R v ) +R ( z .R u ) ) ) ) |
| 90 |
1 2 3 4 5 19 32 71 89
|
ecovass |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( A x. ( B x. C ) ) ) |