| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfcnqs |
|- CC = ( ( R. X. R. ) /. `' _E ) |
| 2 |
|
mulcnsrec |
|- ( ( ( x e. R. /\ y e. R. ) /\ ( z e. R. /\ w e. R. ) ) -> ( [ <. x , y >. ] `' _E x. [ <. z , w >. ] `' _E ) = [ <. ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) , ( ( y .R z ) +R ( x .R w ) ) >. ] `' _E ) |
| 3 |
|
mulcnsrec |
|- ( ( ( z e. R. /\ w e. R. ) /\ ( x e. R. /\ y e. R. ) ) -> ( [ <. z , w >. ] `' _E x. [ <. x , y >. ] `' _E ) = [ <. ( ( z .R x ) +R ( -1R .R ( w .R y ) ) ) , ( ( w .R x ) +R ( z .R y ) ) >. ] `' _E ) |
| 4 |
|
mulcomsr |
|- ( x .R z ) = ( z .R x ) |
| 5 |
|
mulcomsr |
|- ( y .R w ) = ( w .R y ) |
| 6 |
5
|
oveq2i |
|- ( -1R .R ( y .R w ) ) = ( -1R .R ( w .R y ) ) |
| 7 |
4 6
|
oveq12i |
|- ( ( x .R z ) +R ( -1R .R ( y .R w ) ) ) = ( ( z .R x ) +R ( -1R .R ( w .R y ) ) ) |
| 8 |
|
mulcomsr |
|- ( y .R z ) = ( z .R y ) |
| 9 |
|
mulcomsr |
|- ( x .R w ) = ( w .R x ) |
| 10 |
8 9
|
oveq12i |
|- ( ( y .R z ) +R ( x .R w ) ) = ( ( z .R y ) +R ( w .R x ) ) |
| 11 |
|
addcomsr |
|- ( ( z .R y ) +R ( w .R x ) ) = ( ( w .R x ) +R ( z .R y ) ) |
| 12 |
10 11
|
eqtri |
|- ( ( y .R z ) +R ( x .R w ) ) = ( ( w .R x ) +R ( z .R y ) ) |
| 13 |
1 2 3 7 12
|
ecovcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |