| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-pre-mulgt0 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 0 |
| 2 |
|
0re |
|- 0 e. RR |
| 3 |
|
ltxrlt |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A <-> 0 |
| 4 |
2 3
|
mpan |
|- ( A e. RR -> ( 0 < A <-> 0 |
| 5 |
|
ltxrlt |
|- ( ( 0 e. RR /\ B e. RR ) -> ( 0 < B <-> 0 |
| 6 |
2 5
|
mpan |
|- ( B e. RR -> ( 0 < B <-> 0 |
| 7 |
4 6
|
bi2anan9 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 < A /\ 0 < B ) <-> ( 0 |
| 8 |
|
remulcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
| 9 |
|
ltxrlt |
|- ( ( 0 e. RR /\ ( A x. B ) e. RR ) -> ( 0 < ( A x. B ) <-> 0 |
| 10 |
2 8 9
|
sylancr |
|- ( ( A e. RR /\ B e. RR ) -> ( 0 < ( A x. B ) <-> 0 |
| 11 |
1 7 10
|
3imtr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 < A /\ 0 < B ) -> 0 < ( A x. B ) ) ) |