Metamath Proof Explorer


Theorem axmulgt0

Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-mulgt0 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion axmulgt0
|- ( ( A e. RR /\ B e. RR ) -> ( ( 0 < A /\ 0 < B ) -> 0 < ( A x. B ) ) )

Proof

Step Hyp Ref Expression
1 ax-pre-mulgt0
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( 0  0 
2 0re
 |-  0 e. RR
3 ltxrlt
 |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A <-> 0 
4 2 3 mpan
 |-  ( A e. RR -> ( 0 < A <-> 0 
5 ltxrlt
 |-  ( ( 0 e. RR /\ B e. RR ) -> ( 0 < B <-> 0 
6 2 5 mpan
 |-  ( B e. RR -> ( 0 < B <-> 0 
7 4 6 bi2anan9
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( 0 < A /\ 0 < B ) <-> ( 0 
8 remulcl
 |-  ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR )
9 ltxrlt
 |-  ( ( 0 e. RR /\ ( A x. B ) e. RR ) -> ( 0 < ( A x. B ) <-> 0 
10 2 8 9 sylancr
 |-  ( ( A e. RR /\ B e. RR ) -> ( 0 < ( A x. B ) <-> 0 
11 1 7 10 3imtr4d
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( 0 < A /\ 0 < B ) -> 0 < ( A x. B ) ) )