Step |
Hyp |
Ref |
Expression |
1 |
|
elreal |
|- ( A e. RR <-> E. x e. R. <. x , 0R >. = A ) |
2 |
|
elreal |
|- ( B e. RR <-> E. y e. R. <. y , 0R >. = B ) |
3 |
|
oveq1 |
|- ( <. x , 0R >. = A -> ( <. x , 0R >. x. <. y , 0R >. ) = ( A x. <. y , 0R >. ) ) |
4 |
3
|
eleq1d |
|- ( <. x , 0R >. = A -> ( ( <. x , 0R >. x. <. y , 0R >. ) e. RR <-> ( A x. <. y , 0R >. ) e. RR ) ) |
5 |
|
oveq2 |
|- ( <. y , 0R >. = B -> ( A x. <. y , 0R >. ) = ( A x. B ) ) |
6 |
5
|
eleq1d |
|- ( <. y , 0R >. = B -> ( ( A x. <. y , 0R >. ) e. RR <-> ( A x. B ) e. RR ) ) |
7 |
|
mulresr |
|- ( ( x e. R. /\ y e. R. ) -> ( <. x , 0R >. x. <. y , 0R >. ) = <. ( x .R y ) , 0R >. ) |
8 |
|
mulclsr |
|- ( ( x e. R. /\ y e. R. ) -> ( x .R y ) e. R. ) |
9 |
|
opelreal |
|- ( <. ( x .R y ) , 0R >. e. RR <-> ( x .R y ) e. R. ) |
10 |
8 9
|
sylibr |
|- ( ( x e. R. /\ y e. R. ) -> <. ( x .R y ) , 0R >. e. RR ) |
11 |
7 10
|
eqeltrd |
|- ( ( x e. R. /\ y e. R. ) -> ( <. x , 0R >. x. <. y , 0R >. ) e. RR ) |
12 |
1 2 4 6 11
|
2gencl |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |